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This paper examines the linear stability of the Blasius boundary layer over 
compliant walls to three-dimensional (oblique) disturbance wave modes. The 
formulation of the eigenvalue problem is applicable to compliant walls possessing 
general material anisotropy . Isotropic-material walls and selected classes of 
anisotropic-material walls are studied. When the properties of the wall are identical 
with respect to all oblique wave directions, the stability eigenvalue problem for 
unstable three-dimensional wave modes may be reduced to an equivalent problem 
for two-dimensional modes. The results for isotropic-material walls show that three- 
dimensional TollmienSchlichting instability modes are more dominant than their 
two-dimensional counterparts when the walls are sufficiently compliant. The critical 
Reynolds number for Tollmien-Schlichting instability may be given by three- 
dimensional modes. Furthermore, for highly compliant walls, calculations based 
solely on two-dimensional modes are likely to underestimate the maximum 
disturbance growth factor needed for transition prediction and correlation. However, 
because the disturbance growth rates on highly compliant walls are much lower than 
those on a rigid wall, significant delay of transition may still be possible provided 
compliance-induced instabilities are properly suppressed. Walls featuring material 
anisotropy which have reduced stiffness to shear deformation in the transverse and 
oblique planes are also investigated. Such anisotropy is found to be effective in 
reducing the growth rates of the three-dimensional modes relative to those of the 
two-dimensional modes. 

1. Introduction 
The stability of boundary-layer flow over compliant surfaces has received 

considerable attention in recent years. This interest has been motivated to a large 
extent by the potential application of compliant surfaces as transition-delaying 
devices, and by related applications in the area of flow-noise control. The concept of 
boundary-layer stabilization through the use of compliant surfaces has generally 
been attributed to M. 0. Kramer, who carried out, in the late 1950s, a series of 
experiments on streamlined bodies covered with a specially designed compliant 
coating. Kramer (1960) reported that the use of his compliant coating resulted in 
drag reductions of up to 60% over equivalent rigid models. Kramer in turn had 
derived his idea from the pioneering work of Gray (1936) on dolphins. In his study 
of the physiology of the dolphin, Gray, a biologist, found (based on the knowledge 
of his time) that he could not explain the exceptional swimming speeds of the dolphin 
unless he postulated a laminar boundary layer over the animal although turbulent 
flow was to be expected. This led Gray to believe that the dolphin probably possesses 
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the ability to stabilize the boundary layer over its body. The compliant coating 
designed and studied by Kramer in the late 1950s in fact represented his attempt to 
simulate the operation of the dolphin’s epidermis in keeping the boundary layer over 
its body laminar. For a streamlined body, the maintenance of laminar flow is highly 
desirable, not only for its low skin friction but also for its very low noise. A brief 
historical survey of the subject may be found in Yeo (1986). 

The earliest compliant wall model to be studied theoretically is the tensioned 
membrane ; see Benjamin (1960, 1963), Landahl (1962) and others. It was followed 
by the study of elastic and viscoelastic layers by Nonweiler (1963) and Kaplan 
(1964). These works and other contemporary studies laid the main foundations of the 
subject. The major findings of the early works are: 

(i) Wall compliance promotes the stability of the TollmienSchlichting instability 
(TSI) waves, but also introduces a host of new instabilities which are related to the 
compliant quality of the wall. The new instabilities are termed compliance-induced 
flow instabilities (CIFI) to distinguish them from the TSI which also exists on a rigid 
wall. The CIFI are called FISI (flow-induced surface instabilities) in the works of 
Carpenter and coworkers. Among the CIFI, three main types may be identified. The 
fist two are related to the free-surface wave modes and the static deformation modes 
of the wall. They correspond respectively to the flutter and divergence instabilities 
in the field of aeroelasticity. The terms travelling-wave flutter (TWF) and static 
divergence (SD) are frequently used to describe these instabilities. The third type of 
instability is akin to the classical Kelvin-Helmholtz instability. 

(ii) The instabilities are affected in different ways by wall damping. Based on 
energy considerations, Benjamin (1963) proposed a three-fold classification of this 
behaviour. In this classification, an instability is Class A if it grows as a result of 
energy being extracted from the system. Such instabilities are destabilized by wall 
damping. The TSI and divergence instability are examples of such instability. Class 
B instability has the opposite characterization : the instabilities associated with the 
free-wave modes of the wall are Class B and they are damped by wall damping. 
Flutter instabilities belong to this class. Belonging to the third class, Class C, are 
instabilities which thrive mainly on conservative exchange of energy between 
components of the total system. Such instabilities are not strongly influenced by wall 
damping. The Kelvin-Helmholtz type of instability is Class C. 

With such a proliferation of instabilities and such contradictory responses to 
changes in wall properties, the achievement of boundary-layer stabilization appeared 
then to be, and still is, a highly delicate affair. 

In recent years, the modelling of compliant walls has become more refined and 
sophisticated. Spectacular increases in computing power and progress in numerical 
algorithms have greatly eased and lowered the cost associated with the solution of 
the stability problem. Bending plates on an elastic foundation, with and without a 
viscous fluid substrate, were studied by Carpenter & Garrad (1985, 1986). Multi-layer 
viscoelastic walls were studied by Yeo (1986, 1988). Walls with an anisotropic surface 
response designed to induce Reynolds shear stress of predetermined sign were studied 
by Carpenter & Morris (1990) and Yeo (1986, 1990). Carpenter & Morris used an 
idealized rigid sprung-lever model while Yeo used material anisotropy in single- and 
two-layer arrangements. Moreover, in a recent experimental programme carried out 
at  British Maritime Technology, Teddington, Gaster (1987) (see also Willis 1986) 
demonstrated convincingly that the Orr-Sommerfeld stability theory is also 
applicable to the compliant-wall situation. This work provided the theoretical 
community engaged in compliant wall research with a much needed boost of 
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confidence, as the Orr-Sommerfeld theory has up till now been the cornerstone of 
much of the theoretical work done on compliant-wall flow stability. Besides 
reaffirming the major findings of the earlier works, the more extensive and intensive 
recent studies, made possible by the availability of greatly increased computing 
power, have gone further to suggest strongly that significant delay of transition 
(from laminar to turbulent flow) may be possible with suitably designed 
walls/surfaces. The greater complexity of the more recent models (with a larger 
number of controllable parameters) has a part to play in this. It allows finer as well 
as more selective control to be exercised on the various instabilities, hence making 
it possible to suppress the CIFI while still allowing significant stabilization of the TSI 
to be achieved. A recent survey of compliant wall stability research was given by 
Riley, Gad-el-Hak & Metcalfe (1988). 

Most of the work done on compliant-wall flow stability has, however, been devoted 
to the case of two-dimensional (2D) disturbances. These are associated with wave 
propagation in the stream direction. There appear to be two reasons for this 
preoccupation with the 2D case instead of the more general three-dimensional (3D) 
case involving oblique wave propagation : fist the relative simplicity of the former ; 
and secondly the fact that for a rigid wall, the reference case with respect to which 
gains in stability are usually assessed, the critical Reynolds number and the most 
dominant/rapidly growing disturbance modes are given by 2D modes, in accordance 
with Squire’s theorem (Drazin & Reid 1981). Existing knowledge concerning 
3D/oblique wave modes in flow over compliant walls is rather limited. Although 2D 
studies have been successful in elucidating the important mechanics associated with 
compliant-wall flow stability, progress in boundary-layer studies, both theoretical 
and experimental, has indicated that continued preoccupation with the 2D case is 
both unjustified and undesirable. 

For a rigid wall, the tendency of the instability in boundary layers to  develop 
three-dimensionality has been well established since the experimental work of 
Klebanoff, Tidstrom & Sargent (1962). Recent experimental studies such as those of 
Saric & Thomas (1984) and Kachanov & Levchenko (1984), employing the same 
vibrating-ribbon technique, have also added considerably to our knowledge of the 
three-dimensional events that go on in an unstable boundary layer. In  the realm of 
linear stability theory, Mack (1978) noted that although the most unstable wave at  
a given Reynolds number is 2D, the most rapidly downstream growing instability 
wave driven at a fixed frequency may well be 3D. This result suggests that three- 
dimensional linear modes may yet play a fundamental role in the creation of three- 
dimensionality in an unstable boundary layer, possibly complementing those of 
nonlinear effects. In fact, aside from their possible importance in the linear context, 
3D modes also play a primary function in the resonant triad theory of Craik (1971), 
which was postulated to explain the spanwise structures observed in the experiments 
of Klebanoff et al. Three-dimensional linear modes are also fundamental to the linear 
resonant interaction theory of Gustavsson & Hultgren (1980). As another example 
illustrating the important role played by the 3D linear modes, we should also 
mention that Gaster (1975) successfully modelled the spatial and temporal evolution 
of an experimentally observed wave packet in the earlier stages of its growth using 
a Fourier synthesis of 2D and 3D linear modes. Detailed comparison between the 
experimental and the theoretically synthesized pulses revealed that nonlinear effects, 
which led to generation of superimposed higher frequency modes, had generally been 
weak during much of the growth of the wave packet. 

The above serves merely to emphasize the fundamental importance of 3D/ohlique 
18 FLM 238 
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wave modes in the instability of two-dimensional boundary layers and that the 
instability is characterized by a strong degree of three-dimensionality even when the 
most dominant modes are supposedly 2D. Similarly for compliant walls there are no 
a priori grounds to suppose that the most unstable mode will be 2D. In  fact, it can 
be shown, via a rotation of the coordinate frame, that 3D temporal disturbances in 
a 2D basic flow field always perceive a basic velocity field of reduced magnitude. 
While this generally has the desirable effect on flow stability of reducing the effective 
Reynolds number of the perceived flow, it also has the effect of making the compliant 
wall appear stiffer to the flow. The notion that oblique wave modes perceive a wall 
with reduced compliance relative to the 2D case was pointed out by Yeo (1986), and is 
termed the stivffness rescaling effect in the subsequent discussion. This idea was also 
emphasized by Carpenter & Morris (1989). In the case of the TSI, the perceived 
increase in wall stiffness can be expected to have a destabilizing influence, as earlier 
2D studies has shown. With the simultaneous presence of two opposing influences on 
stability, it  becomes more difficult to know, without actual calculation, if the 2D or 
the 3D modes are going to be the more unstable ones. Squire’s theorem, which is 
based only on the effective reduction in the Reynolds number for 3D/oblique modes, 
obviously could not be expected to remain valid. In  fact, the existence of a 
destabilizing influence on stability, not present in the case of a rigid wall, strongly 
indicates that 3D disturbance modes will play a more important role in the stability 
of flows over compliant walls than in similar flows over rigid walls. The problem 
concerning the relative dominance of 2D and 3D modes gets more complex when the 
surface/wall exhibits an anisotropic response with respect to the direction of wave 
propagation. There are good reasons for studying walls which respond anisotropically 
to surface stresses. Firstly, some of the walls which have shown a highly favourable 
influence on flow stability in 2D studies are anisotropic (Ye0 1990). Secondly, 
anisotropy may provide a facility by which the stability of oblique wave modes may 
be favourably influenced. 

Literature on the subject of 3D wave modes in flows over compliant walls is very 
limited. Cursory remarks concerning such modes may be found in Benjamin (1960) 
and Landahl(l962). Kaplan (1964) did a limited study on spring-backed membranes, 
but his results probably contain the errors pointed out by Carpenter & Garrad (1985). 
For potential flow over orthotropic plates (which admit mainly Class A CIFI) 
Carpenter (1984) showed that the most unstable temporal disturbance is 2D. Some 
3D results for boundary-layer flow over a class of plate-type anisotropic walls were 
recently presented by Carpenter & Morris (1989). A more complete version of this 
work, which delves into the role of 3D modes in transition delay over both isotropic 
and anisotropic plate surfaces, is now available in Joslin, Morris & Carpenter (1991). 
An asymptotic theory applicable to 3D wave modes was also recently presented by 
Carpenter & Gajjar (1990), and applied to plate-type surfaces. A detailed and 
comprehensive study of 3D wave modes was undertaken by Yeo (1986), wherein 
cases of both isotropic- and anisotropic-material (single- and multi-layered) walls 
were examined. 

The multi-layer walls studied by Yeo (1986) were modelled using well-established 
linear continuum mechanics of solids. The theory admits three degrees of freedom for 
the displacement at each point in the wall, and caters naturally for anisotropic- 
material behaviour of the most general type. The latter is an important feature 
because of the increasing availability of anisotropic materials in composite or other 
forms. The theory provides a highly realistic simulation of the dynamical behaviour 
of compliant walls constructed from one or more solid layers, subject to the 
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assumption that the displacement is small. Carpenter (1990) called such modelling a 
volume-based method. Surface models such as membranes and plates admit essentially 
one degree of freedom in displacement. They tend to be simpler in dynamics, but 
nevertheless contain all the primary dynamical ingredients of the more complex 
volume-based models : inertia, elasticity and damping. Thus membrane tension and 
spring foundation stiffness are the counterparts of stiffness moduli and thickness of 
solid layers ; foundation damping is the counterpart of viscoelastic material damping 
and membrane surface density is the counterpart of material density. Beside these 
gross similarities, there are no simple relations between the parameters of surface 
models and the properties in layered models. The simplicity of the membrane model 
enabled Benjamin (1960,1963) and Landahl(l962) to elicit the fundamental features 
of compliant-wall flow stability and lay the foundation for the subject. Its simplicity 
also allowed Carpenter and coworkers to make rapid progress in their study of the 
transition-delaying potential of plate surfaces. Simplicity also has its price. Thus, the 
plate model tends to overpredict the stiffness of the wall to disturbances of shorter 
wavelengths because of its inherent assumption of small thickness. And compliant 
surfaces of the membraneous type in particular are not very practical constructs. 
They tend to be rather more difficult to build and maintain to specifications for either 
experimental or application purposes. Walls comprising layers of say elastomeric 
materials are more easily constructed, and are most likely to be the form that 
practical compliant walls will take. Furthermore, in their multi-layer configuration, 
layered walls also confer a degree of control (from design viewpoint) over the 
stability characteristics of the flow not available to the simpler surface models. The 
original Kramer walls are multi-layer in construction, albeit complex because 
Kramer had to cater for spaces for his damping fluid. Elastomeric material layers 
were also used by Gal-el-Hak, Blackwelder & Riley (1984) and many others in their 
experimental compliant-wall studies. In his recent experimental work, directed at 
verifying the validity of the Orr-Sommerfeld theory applied to the compliant-wall 
situation (already alluded to), Gaster (1987) had in fact chosen to work with two- 
layer rubber walls. Excellent agreement was found between the experimentally 
measured amplification rates and the predictions of a corresponding two-layer 
volume-based model similar to those studied by Yeo (1986, 1988) (see also Willis 
1986). These are justifications for studying solid-layer compliant walls. After all, to 
build solid-layer walls to delay laminar-turbulent transition, we would need to know 
the generic features of their stability behaviour as well as how to determine their 
precise stability characteristics. 

In this paper, we shall be concerned primarily with the linear stability of 
3D/oblique wave modes in zero-pressure-gradient boundary-layer flow over layered 
compliant walls. It represents a summary of the 3D results in Yeo (1986) with 
additional new results. Issues relating to the possible occurrence and consequences of 
wave interactions are not considered in this paper although they are very interesting 
in their own right and essential to a fuller understanding of flow instability and 
transition over compliant walls ; and the possibilities for such interactions appear to 
be enhanced by the presence of compliant surface response. It is the author’s view 
that these more complex problems are best deferred until we have acquired a more 
comprehensive knowledge of the issues concerning the linear modes. 

The present study covers both isotropic and anisotropic compliant walls. The 
formulation of the 3D stability eigenvalue is described in $2 for the general case of 
a multi-layer anisotropic wall. Anisotropy with respect to the direction of wave 
propagation is derived from anisotropy of the wall material. The important subcase 

18-2 
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of walls possessing an isotropic surface response is considered in detail in $2.6. Here, 
it is shown that the study of the unstable 3D eigenmodes can be reduced to the study 
of an equivalent 2D problem. Results for isotropic- and anisotropic-material walls 
are discussed in $53 and 4 respectively. The 3D results supplement the 2D stability 
results of Yeo (1988) for isotropic-material walls and Yeo (1990) for a class of 
transversely isotropic-material walls. The present paper can be regarded as a sequel 
to these works. The use of material anisotropy to improve 3D stability is also 
explored. 

2. Theoretical formulation 
The fundamental problem of concern here is the stability of two-dimensional 

boundary-layer flow on compliant surfaces/walls to small-amplitude three-dim- 
ensional (oblique) disturbance waves. The coordinate frame (x,, x,, x3) of the stability 
problem is depicted in figure 1.  The x,-axis points in the principal stream direction, 
while the x2- and x3-axes point respectively in the cross-flow and the upward vertical 
directions. The compliant walls of interest are assumed to be composed of one or 
more uniformly thick layers of homogeneous compliant materials backed by a rigid 
base, with the top surface spanning the ( x ~ ,  x,)-plane at x3 = zo = 0 in the unperturbed 
state. A sample two-layer anisotropic compliant wall is illustrated in figure 1. For the 
theoretical treatment, the compliant materials are assumed in this section to possess 
anisotropy of general but unspecified type. 

2.1. Governing equations and boundary conditions 
Subject to the assumptions of small-amplitude disturbances and locally parallel 
mean flow U = (U(x3), 0, O)T,  the Navier-Stokes equations and the continuity 
equation admit a disturbance velocity u = (ul, u,, u ~ ) ~  and disturbance pressure 
solutions having the form 

( ~ , p ) ~  = (ti,$)Texp [i(ax,+/3x2-wt)] (1) 

of a travelling wave propagating in the (ar, Pr, 0) direction, where a and /3 are the xl- 
and 2,-wavenumbers respectively. Subscript r denotes the real part and w is the 
radian frequency. The hat symbol denotes the x3-dependent amplitude functions. 
The disturbance velocity and pressure amplitude functions ti = (&,, Zi,, and 2; 
satisfy the following linear differential equations : 

ia(U-c)&,+U'2i3 = -ia$+R,1[C;-(az+p2)Zil], (2a) 
(2 b)  

( 2 4  

( 2 4  

ia(U-c) 6,  = -i/3$+R;'[Zi;-(a2+P2)6,], 

ia(U-c) G3 = -$'+R,'[zi;- (a2+,!?,) ti,], 

i(azi, + @,) + 22; = 0 

(see $25 of Drazin & Reid 1981). The velocities, lengths and densities in ( 1 )  and (2) 
are assumed to have been non-dimensionalized with respect to the following 
reference scales : the free-stream velocity U g ) ,  the local displacement thickness of the 
boundary layer and the density of the flow p y ) .  Superscript (d) indicates that the 
quantity is dimensional. R, = U z )  cVd)/vy) denotes the Reynolds number based on 
the local displacement thickness, where vjd) is the kinematic viscosity of the fluid. 
c = w / a  is the phase speed of the wave in the x,-direction. The prime denotes ordinary 
derivative with respect to x3. R, = 1.72078R!, where R, = Ug)xid)/vy) is the 
Reynolds number based on the streamwise distance from the leading edge xid). For 
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/ U Isotropic top layer 
/ X1 

Cross-section: 
hexagonal symmetry 

FIQURE 1.  Flow over an anisotropic two-layer compliant wall. (q, rp, zQ) denotes the coordinate 
frame of the stability problem. The compliant wall shown comprises a thin layer of isotropic 
material on a thick layer of transversely isotropic (of fibre-reinforced type) material, following Yeo 
(1990). A ,  denotes the angle of inclination of the axis of isotropy (fibre axis) for the transversely 
isotropic layer. 

the case of a zero-pressure-gradient boundary layer the mean flow velocity in the xl- 
direction U(x,) is given by the Blasius profile; the x,-component of the mean flow 
being neglected in the locally parallel flow approximation. 

The linear wave modes in the compliant wall layers also have the form 

q = tjexp [i(axl+/3xz-wt)], (3) 

PVP = g p q , q  @ = 192’3) (4) 

g p q  = C p q r s  e r s .  (5) 

where q = ( q l ,  qz, T , ) ~ ,  the displacement vector, satisfies the equations of motion 

and the linear anisotropic stress-strain relationship 

Here, [gPq]  and [e,,] (where e,, = + ( ~ ~ , ~ + q ~ , ~ ) )  are the stress and strain tensors 
respectively. [Cpq,,] is called the viscoelastic modulus tensor here and its components 
are complex functions of frequency w when there is material damping. Einstein’s 
convention on repeated indices and subscript comma is assumed throughout this 
paper. The viscoelastic modulus tensor satisfies the following symmetry conditions : 

C p q r s  = C q p r s  = C p q w  and C p q r s  = Crspq’  (6) 

see Fung (1965). These conditions reduce the number of independent components of 
[Cpqr,] to a maximum of 21 for the most general homogeneous anisotropic material; 
see Green & Zerna (1968). 

The disturbances in the flow and the wall are coupled at their common interface, 
whose position is not generally known in advance, by the conditions of velocity and 
stress continuity. Linearization based on surface amplitude enables these conditions 
to be applied a t  the position of the mean interface at  x3 = z,, = 0. The linearized 
conditions of velocity continuity are 

(7a-c) 
. A  ” A ”  

- iuGl = zi, + U’lz0 G3, - iwqz = uz, - iwq3 = us. 
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The linearized conditions of stress continuity a t  the wall are 

1 
&31 = -('(it + iaS, + U"lz0 f,), 

1 " 2  

R, R, 

( 8 4  

(8b ,  c )  

R, 

632 = -(6i+i/3d3), u3, = -ti;-#, 

where &31, 632 and 15,~ are the components of the traction vector f = ($,,, c?,~,  
acting on the wall and 

To complete the specification of the problem, the following boundary conditions 
are assumed: (i) For the wall, the last compliant layer is bonded onto the rigid base 
so that the displacement q = O  there. (ii) For the flow, the velocity and pressure 
disturbances u and p decay to zero far away from the wall. 

2.2. Transformation of governing equations and boundary conditions 
The equations and boundary conditions given in the last section fully define the 
stability eigenvalue problem, though not in a form that is convenient for either 
physical interpretation or numerical solution. Instead of using those equations 
directly, we formally apply a Cartesian-type transformation of the form 

x; = -x a P  +2x2, x; = --x P a  + g x 2 ,  x; = 53, 
at at (9) 

where (at)2 = a2+P2 and xt = (x;,xi,xi) is the coordinate vector of the new 
coordinate frame. The superscript t denotes quantities in the new frame. For real 
wavenumbers, the transformation given by (9) corresponds to a rotation of the 
original Cartesian frame through an angle 0 about the x,-axis where cost9 = a/at. 

Under the transformation, the flow disturbance quantities in the old and new 
frames are related by 

The linear differential equations (2) can be recombined with the pressure terms 
eliminated, and recast in terms of the new disturbance quantities as 

1 
(V-ct)(.li;"-(at)2a;)- J7'"zit - -((Zi;c2"22j;"+ ( @ t ) 4 4 ) ,  

- la"R, (114 

a ac 
where V(x;) = - U(x,) and ct = -. 

at at 

Equations (11) above are identical to (46) of Stuart (1963) except for the velocity 
terms V and ct. The velocity field V(x\) is merely a scaled-down version of the original 
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velocity field U(x,) ; both are referenced to the same velocity scale U$. Equation 
( 1  1 a)  is identical in form to the well-known OrrSommerfeld (0s) equation and is 
referred to here by the same name. Equation ( 1  1 b )  is commonly referred to as the 
vertical vorticity (VV) equation. 

The well-known Squire's transformation (Squire 1933) is actually equivalent to the 
above coordinate transformation plus a further change of the reference velocity scale 
from U g )  to V g )  = U g )  cos8. With this change of velocity scale, (11 a )  becomes the 
0s equation with the original velocity profile U(z,). The rescaled stability problem 
is elaborated in Q 3.2. For numerical implementation which involves compliant walls, 
however, the use of governing equations ( 1  1 )  with the fixed velocity reference scale 
U g )  is much to be preferred. 

The formal transformation of the disturbance wall quantities follows : 

QC = 

The governing equations for wall motion (4) and the linear stress-strain relation ( 5 )  
remain invariant in form under the transformation : 

(13) 

and at,, = C L r s  4. (14) 

*.t - t 
P?lp  - c p q , q  (r, = 192,313 

[C;,,,] is the modulus tensor in the transformed frame. It is related to the [C,,,] of the 
original frame by the transformation rules for Cartesian tensors. 

The interface boundary conditions given by (7) and (8) ,  which relate the 
displacement and stress state of the wall at the mean interface to the disturbance 
quantities of the flow, can also be reformulated in terms of the transformed 
quantities. The transformed boundary conditions are summarized below in a matrix 
form that is convenient for the subsequent development of the theory: 

c 

- w-ZVV; - (atw)-' 0 0 0 0  

P - v; 
aw2 

0 0 0 iw-l 0 

iw-' 0 0 0 0 0  

-RilVG iP 0 0 0 0 R;l 
aw 

X,yat + @-iy w) 0 - (iatRJ1 0 0 0  

- (iat)-'VW (3R;' + ct(iat)-') 0 -(at)-2R;' 0 0 

where 

and 
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The requirement that the flow disturbances decay to zero as xi+ 00 can be 
translated into suitable boundary conditions for 2;; and 2;; by examining the 
exponential solutions of (1 1 a,  b )  at large xi. Upon discarding the exponentially 
growing solutions, it is easy to show that at  large xi the flow disturbances 2;; and 2;: 
should satisfy 

(16a-c) 

where x = [(at)* + iatR,( V, - d)]; and a:, xr > 0. The transformed boundary con- 
ditions at  the rigid base are simply given by qt = ( ~ i , y ; , ~ i ) ~  = 0.  

The formulation of the eigenvalue problem is greatly simplified by the fact that 
(13) and (14) (or (4) and (5)) governing wall motion can be solved in closed form. This 
is described next. 

0 o x 1  

2.3. Wave propagation in  anisotropic compliant layers 
From (3), the fundamental wave solutions to (13) and (14) for a uniformly thick 
homogeneous layer in the transformed variables has the form of 

qt = it exp [i(atz; - w t ) ] ,  (17) 
where it = bexp (iyxt,). For a non-trivial wave, the substitution of (17) into (13) and 
(14) yields the following determinantal equation : 

Det ~ w 2 S , ,  - Cbqrs kk k:] = 0, 

where the wavenumbers (k; ,  k;, kt,) = (at,O,y) and S,, is the Kronecker delta. For a 
wave of specified frequency w and wavenumbers a and p (and therefore of known at), 
(18) is a six-degree polynomial equation in y.  For simplicity, we assume the six roots 
of (18), denoted by y,(n = 1, .. . ,6) ,  to be distinct. (Note that (18) is formally 
equivalent to the determinantal equation obtained from the substitution of (3) into 
(4) and (5). They have the same set of y-roots.) The general solution to the wave 
propagation problem can then be represented as a linear combination, 

of the six fundamental solutions 

qt(,) = &(,) exp (iy, z:) exp [i(atx; -wt )]  (n = 1 , .  . . ,6),  (19b) 
where &(,) = (bin, b2,, b,,)T is the eigenvector corresponding to the root yn. Dn(n = 
1,  . . . , 6 )  are complex constants which are determined by the boundary conditions on 
the layer. The xt,-dependent amplitudes of the components of qt are 

6 

f b  = 2 D, b,, exp (iy, xi) (p = 1,2,3).  
n-1 

Substituting the solution (19) into the stress-strain relation (14), the 2:-dependent 
amplitudes of the disturbance stresses can be obtained as 

i s  
2kg = - 2 D, Ckqrs(brn k p )  + b,, ky)) exp (iy, x",, 

2 n-1 

where ( k p ) ,  k p ) ,  kin)) = (at, 0, 7,). Note that there is summation on indices r and s in 
(21). With (20) and (21), the displacement and stress state a t  any point in a layer is 
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given in terms of the constants D,(n = 1 ,  .. . , 6 ) .  In particular, the displacement- 
stress vector St = ($", $!, $!, &is, is linearly related to the constant vector 
D = (D1,. . . ,D,)T as 

where the components of the matrix Q may be deduced from (20) and (21) .  
Let us assume that the first (topmost) compliant layer spans from xi = zo (top) to 

x! = z1 (bottom) and has thickness h = zo-z l .  The displacement-stress vector St(zo) 
at the top surface is then related to its value St (z l )  at the bottom surface of the layer 

(23) 

where P(zl ,  zo) = Q(zl) Q-l(z0) is termed the propagation matrix. One such propa- 
gation matrix can be defined for each homogeneous layer in a multi-layer compliant 
wall. In a compliant wall comprising n layers (where the j t h  layer spans from 
xi = zrP1 (top) to x! = z, (bottom)), it is easy to see that 

St(x!) = Q(x!)D, (22)  

by 
St@,) = m,, 2 0 )  St(z,) = P(0, h) St(%), 

St(%,) = P O S t ( Z , ) ,  ( 2 4 4  

where the matrix 

is termed the overall propagation matrix and P(J)  is the propagation matrix of the 
j t h  layer of the n-layer compliant wall. The overall propagation matrix relates the 
displacement and stress state at the top surface of the first compliant layer to the 
displacement and stress state at the bottom of the last compliant layer, which is 
assumed to be in bonded contact with the rigid base. Equation (24) represents the 
form of the wave solution for the wall which is useful both as a generalized 
formulation of the stability eigenvalue problem (applicable to a compliant wall 
having any finite number of layers) and for numerical implementation. 

2.4. The three-dimensional stability eigenvalue problem 
From (15) and (24) ,  we immediately have 

St(z,) = POQ, Wt(zo),  (25) 

which relates the displacemenbstress state at the rigid-base interface to the flow 
disturbances at  the mean flow-wall interface at xi = zo. At the rigid-base interface, 
#(z,) = ($", $!, $!)T(z,) = 0 ,  so that the first three rows of (25) yield three boundary 
conditions for the flow disturbance quantities 2; and 2:. Three further boundary 
conditions are furnished by (16a-c), arising from the requirement that flow 
disturbances must decay to zero as xi + co . These six homogeneous boundary 
conditions and the disturbance flow equations (1 1 a, b) constitute the three- 
dimensional stability eigenvalue problem. 

2.5.  Models of homogeneous anisotropy 
In  this section, we give a precise but brief description of the homogeneous anisotropy 
models used in this paper. More information concerning the models and some of their 
physical realizations may be found in Lekhnitskii (1963) and Christensen (1979). The 
latter concerns anisotropy in composite materials. The constitutive stress-strain 
relations are given with respect to coordinate frames denoted by (xirn), xirn), xirn)). 
These frames are termed material-property frames. With respect to its material- 
property frame, the stress-strain law of an anisotropic material assumes a simple 
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(usually with the maximum number of zeros in its modulus tensor) and physically 
meaningful form. Commonly used material moduli such as Young's modulus, shear 
modulus and Poisson's ratio are usually specified with respect to  these frames ; and 
indeed meaningful only in the context of such frames. 

The stress-strain laws in other Cartesian coordinate frames, such as (xl, x2, x3) and 
(xi, xi, x:) of the original and the transformed stability problems respectively, can be 
obtained from the stress-strain law specified in the material-property frame (xim), 
xim), xi")) by the application of the transformation rules for Cartesian tensors. Thus 
if 1, denotes the cosine of the angle bctween the xi-axis of the (x1,x2,x3)-frame and 
the j")-axis of the (x~m),x~m,m),x~m))-frame then the modulus tensor [C,,,,. in the 
former frame is given in terms of [C@] of the latter frame by 

C p q r s  = cgi I,, 1 ,  I,, 4 , .  
2.5.1. Orthotrop y 

The orthotropy model is characterized by the existence of three mutually 
orthogonal planes of symmetry. A plane of symmetry means a plane about which the 
properties of the material are symmetric ; see Green & Zerna (1968). Nine independent 
moduli are required to specify the most general orthotropic material. The 
stress-strain relationship for an orthotropic material which has the three orthogonal 
planes parallel to the (xim), xim)), (xi"), xim))- and (xi"), zim))-planes of the material- 
property frame assumes the following compact form : 

where 
[ g ~ i ,  g22, g33, =23, g13? g12]T(m) = C(") [ell, €22, 8 3 3 , 2 € 2 3 , 2 E 1 3 ,  2E12]T(m), ( 2 6 ~ )  

The components of matrix C(m) are derived directly from the components of the 
modulus tensor [Clgl]. For simplicity, stress-strain relations for anisotropic models 
are frequently presented in their compliance form : 

[ell, €22, €337 2e237 2e13, 2e121T'm' = '(") I g l l r  B227 g339 g23) g13? 12 (27) 

where S(m) = [C(")]-', the matrix inverse of C("). The compliance matrix S(m) for 
an orthotropic model is given by 

v12 _ _  
El 
1 - 

E 2  

'32 -_ 
E 3  

0 

0 

0 

_ _  '13 

El 

E 2  

_ _  '23 

1 - 
E 3  

0 

0 

0 

0 

0 

0 

1 

0 

0 

- 
G23 

0 

0 

0 

0 
1 

0 

- 
Gl, 

0 

0 
1 II. Q l 2  
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Ei is the Young’s modulus of the material along the zim)-axis ; vi, is the Poisson’s ratio 
characterizing the contraction along the xjm)-axis when the material is subjected to 
imposed strain along the zim)-axis. We note that the compliance matrix S(m) is a 
symmetric matrix so that vi, Ej  = vji Ei (no sum on indices). G ,  is the shear modulus 
for shear deformation (divergence free) in the (xim), zjm))-plane. 

2.5.2. Transverse isotropy 
The transverse isotropy model is characterized by the existence of a distinguished 

direction, termed the axis of isotropy. The properties of the material are identical in 
all directions perpendicular to this axis, and planes normal to this axis are called 
planes of isotropy. Five independent moduli are required to specify the most general 
form of transverse isotropy. With the axis of isotropy aligned along the zim)-axis of 
the material-property frame, the compliance matrix has the form 

0 0 
\ 

where E = 2G( 1 + v). E is the Young’s modulus along the ixis of isotropy ; G is the 
shear modulus for shear deformations that occur in the plane of isotropy, while G’ is 
the shear modulus for planes normal to the plane of isotropy; and v’ is the Poisson’s 
ratio characterizing contraction in the plane of isotropy for imposed strain along the 
axis of isotropy, while v is the Poisson’s ratio characterizing contraction within the 
plane of isotropy for imposed strain in the same plane. Transverse isotropy can be 
regarded as a special case of orthotropy which has one isotropy plane among its 
symmetry planes. 

2.5.3.  Isotropy 
Complete material isotropy, meaning identical properties in all three dimensional 

directions, is obtained when we set E = E’, v’ = v and G’ = G in the transverse 
isotropy model. Isotropic material behaviour can also be derived from the orthotropy 
model by setting all the Young’s moduli to E, all the shear moduli to G ,  all Poisson’s 
ratios to v, and requiring that E = 2G(1+ v). The deformation of an isotropic 
material subjected to stresses is characterized by just two independent moduli. The 
shear modulus G and bulk modulus K are commonly used. In terms of G and K ,  the 
Poisson’s ratio and Young’s modulus for isotropic materials are given by 

9KG E = -  ’= 2 ( 3 K + G ) ’  3 K + G ‘  
3K - 2G 

The isotropic stress-strain relation is identical in all Cartesian reference frames. The 
moduli consequently have the same values in all such frames. 
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2.6. Material isotropy in the (xl, x,)-plane 

In this section we focus attention on the case of compliant walls which have material 
properties such that the (xl, $,)-plane is a plane of isotropy ; that is, the properties of 
the wall are identical with respect to all directions in the (xl, x,)-plane. The x,-axis 
is then an axis of isotropy and all planes normal to the (x,,x,)-plane are planes of 
symmetry. Typical examples are walls constructed from layers of isotropic or 
transversely isotropic materials - in the latter case the materials' axis of isotropy 
must clearly be parallel to the x,-axis. The objective of this section is to show that 
for such walls, the three-dimensional eigenvalue problem formulated in the preceding 
sections is reducible to an equivalent two-dimensional problem associated with the 
Orr-Sommerfeld equation (1 1 a) for a scaled-down basic flow field. 

We begin by noting that the dynamic response of the surface of the compliant wall 
to surface traction tt = (ail, a:,, can be cast in the form 

i t (2 , )  = Z"t(zo) (31 4 

PY5 PY6 -l PYl PY, PY, 

where Zt, a 3 x 3 matrix function of w ,  a, p and the material properties of the wall, 
is given by 

zt=[Fi P:b P B ]  [J?- P:2 P:3]. (31 b)  
p% p:5 ':6 '?I p:2 p,", 

Equation (31) is obtained from (24) by applying the boundary condition fjt(z,) = 0 
at the interface with the rigid base. P$ denotes the (i,j)-component of the overall 
propagation matrix Po. 

We next consider the form that Zt must assume given the symmetry with respect 
to all directions in the (x,,x,)-plane. Let us consider a wave propagating in the 
(a, B,O)-direction, where a and p may be assumed to be real for ease of interpretation. 
The xi-axis points in this direction and the (xi, x;)-plane is a plane of symmetry for 
material properties. When the (xi, x;)-plane is a plane of symmetry, the fundamental 
wave solutions for the wall can be divided into two classes : a class of two-dimensional 
motion with displacement occurring only in that plane (Qi = 0) (in-plane motion) and 
a class of one-dimensional motion with displacement taking place only in the xi- 
direction (Q4 = $: = 0) (anti-plane motion). The wave solutions and the associated 
stresses of the two classes are independent of each other or, in other words, the two 
classes of motions are completely decoupled. An example of such a decomposition 
into the two distinct classes of motion, in-plane and anti-plane, due to a plane of 
symmetry can be found in Yeo (1990). Since the dynamics of the in-plane and anti- 
plane motions are decoupled from each other, the matrix Zt must necessarily have 
form 

[zii 0 zi3],. 

Zt= 0 Zi,  (32) 
z;1 0 z;3 

where all components with indices containing the number 2 once are zero. The form 
of Zt remains the same when a and /3 are complex because the formal mathematical 
operations involved are identical to those for real a and p. A more detailed proof that 
Zt has the form given by (32) can be obtained by considering the effect of the 
symmetry on the governing equations and the resultant effect on the form of the 
propagation matrices. 



Three-dimensional stability of flow over compliant walls 55 1 

From ( 15a) we have 

f t ( zo )  = Qg Wt(zo) and it(zo) = QE Wt(zo),  (33% b )  
where QZ and QE denote the upper and lower halves of the flow-wall coupling matrix 
0, respectively. The substitution of (33) into (31) yields 

[QE-ZtQg] Wt(z0) = 0. (34) 
Equation (34) is equivalent to the three wall-related boundary conditions for the 
eigenvalue problem of 52.5, obtained there by setting @(z,) = 0 in (25). The three- 
dimensional stability eigenvalue problem is therefore alternatively defined by the 
boundary conditions (16) and (34), and the flow disturbance equations (11 a, b ) .  With 
the restriction on the form of Zt given by (32), equation (34) works out as 

Careful examination of the system of equations comprising the flow disturbance 
equations (1 1 a, b ) ,  the wall-related boundary conditions (35 u-c) and the far-field 
boundary conditions (16a-c) reveals that they can be conveniently separated into 
two distinct subsystems. The first subsystem consists of the 0s equation (1 1 a)  and 
the four boundary conditions (16a, c )  and (35a, c). This is a complete system of 
homogeneous equations and boundary conditions in the disturbance component G;”3 
and it consequently defines an eigenvalue problem for the existence of non-trivial 
&!-disturbances. The second subsystem comprising the VV equation (1 1 b )  and the two 
boundary conditions (16 b )  and (35 b )  is an inhomogeneous system in 6; when /3 + 0 
(oblique modes) and 2;; + 0. The second subsystem yields a solution for fi; when the 
eigenfunction 6; is prescribed by the solution of the first subsystem. The second 
subsystem, however, becomes homogeneous when 2;: = 0, and hence constitutes an 
eigenvalue problem for the existence of non-trivial disturbances with zero 
xi-component. By the continuity relation ( l l c ) ,  4: E 0 implies 2;: = 0 so that the 
disturbance modes associated with the second subsystem are essentially one- 
dimensional motions. The disturbance modes associated with the first subsystem are 
three-dimensional in both the original and the transformed coordinate frames. The 
underlying dynamics is, however, two-dimensional, being governed by a modified 0s 
equation and a two-dimensional set of boundary conditions. 

The above analysis indicates that the three-dimensional stability eigenvalue 
relation for two-dimensional boundary-layer-type flows over ‘ isotropically ’ res- 
ponding surfaces can be factorized into a part which is governed by the modified 0s 
equation and a part governed by the VV equation. The same decomposition of the 
three-dimensional spectra is also applicable to similar flows over a rigid wall. In fact, 
the resonant interaction theory proposed by Gustavsson & Hultgren (1980) to explain 
the onset of instability in plane Couette flow concerns precisely the resonant 
excitation of the VV modes (second subsystem) by the 6:-eigenfunctions of the 0s 
modes (first subsystem). We shall not be concerned here, however, with the possible 
generation of instabilities by such a mechanism ; although the possibilities for 
interaction would appear to be enhanced by the proliferation of modes accompanying 
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compliant surface response. Such studies are better deferred until we have acquired 
an improved knowledge of the basic issues related to simple three-dimensional 
exponential instabilities. 

For a rigid wall, the spectrum of the VV equation (1 1 b )  is known to comprise only 
damped modes (Davey &, Reid 1977). From the viewpoint of linear stability theory, 
this spectrum is of no interest because the linear theory only provides sufficient 
conditions for instability. Below, it is established that the spectrum of the VV 
equation for the case of compliant wall possessing the usual properties of mass 
inertia, elasticity and viscous damping also comprises only damped modes. 

In the absence of forcing by the 0s modes, the VV equation is 

u2 "t"- (at)24t,-iat(V-ct)R,4t, = 0. (36) 

Multiply (36) by Gi* (where superscript * denotes complex conjugation) and 
integrate over the flow domain to yield 

where the assumption that 2;: + 0 as xi + co has been used. In the absence of forcing, 
the boundary term in (37) becomes 

by the application of the interface boundary conditions (15). The bracketed term on 
the right-hand side of (38) represents work done at the mean boundary of the wall 
by the flow disturbance. This work-done term can be related to the dynamics of the 
wall in a very general manner following the variational treatment of Yeo & Dowling 
(1987). From ( 2 . 8 ~ )  of Yeo & Dowling, 

gi2 fi*lzo = - 2w21 -I- 2E - BioD, (39) 

where it is noted that the VV modes only involved the anti-plane component 4;. The 
terms I and D are positive-definite real-valued integrals related respectively to the 
kinetic energy and dissipation within the compliant wall. The real-valued integral E 
is related directly to the stored energy within the wall and may be assumed to be 
positive for linear wave problems which involve small initial displacements. More 
details concerning the integrals are given in Yeo & Dowling (1987). The only 
property of I ,  D and E that we need to invoke here is their positivity. With (38) and 
(39), (37) becomes 

Jzy 14\'12+[(at)2+iat(V-ct)R,] lut,l2dx: = 2R,( iw~w~zI- io*E-~lo(zD).  (40) 

Let us consider the case of temporal instability for which the wavenumbers a and 
are real while frequency o is allowed to be complex. at and atV = aU are then real 

and o, > 0 for unstable modes. Taking the real part of (40) we have 

A simple reductio ad absurdum argument applied to (41) then shows that mi must 
necessarily be less than zero for non-trivial disturbance modes. The temporal 
eigenvalue spectrum of the system of VV equations and associated boundary 
conditions therefore comprises only decaying modes. This result implies, by the time- 
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asymptotic stability analysis of Briggs (1964), that there can neither be absolute nor 
convective (spatially growing casual mode) instabilities. 

The above demonstrates that in studying the three-dimensional linear instability 
of two-dimensional boundary-layer flow over isotropically responding surfaces, we 
need only examine the eigenvalue spectrum of the 0s equation (11 a)  and its 
associated boundary conditions. The problem is in essence two-dimensional and can 
be solved using codes designed for two-dimensional studies. 

The reduction of the three-dimensional eigenvalue problem to an equivalent two- 
dimensional one is not generally possible for anisotropically responding surfaces. For 
a surface whose response is not isotropic with respect to directions in the (x , , x2 ) -  
plane, the components Z42, Z:,, Z:, and Z!, of the matrix Zt may not be zero. In  
particular, when Zi2  is not zero, the surface traction components $\l lzo and &!t331zo have 
a dependence on the transverse displacement component $&. This provides a 
feedback route by which the transverse disturbances '12: and i i  can influence the in- 
plane components $:, $!, $: and $!, and hence couples the first and second subsystems 
of equations in a non-trivial manner. For isotropically responding surfaces, the 
influence only travels one way from the in-plane to the anti-plane components. An 
alternative explanation for the reduction of the three-dimensional eigenvalue 
problem to two dimensions was given in Chapter 5 of Yeo (1986) for the case of 
isotropic material walls. 

2.7. Aspects of numerical solutions 
For cases which are reducible to two-dimensional ones, available two-dimensional 
programs can be easily adapted to determine the eigenvalues ; only a scaling of the 
mean-flow field U(x,) by the factor a/at is required. The 3D isotropic-wall results 
presented in this paper were therefore obtained by using a modified version of the 2D 
program of Yeo (1988) which incorporated the scaling. The $:-eigenfunction if 
required can be obtained by solving the W equation (1 1 13) and associated boundary 
conditions subject to forcing by the two-dimensional solution. 

For the fully three-dimensional cases, which require the simultaneous solution of 
the 0s equation (1 1 a )  and the VV equation (1 1 b),  a collocation method based on the 
expansion of the solutions in terms of Chebyshev polynomials was used. The mean- 
flow velocity and its derivatives were represented as Chebyshev series of 40 or 50 
terms each. The number of Chebyshev polynomials used to represent the solutions 6: 
and 2: ranged from 30 for R, less than 1000 to more than 50 for R, greater than 6000. 
Regular checks were made to ensure that a sufficient number of terms were used. As 
expected, the 3D spectral collocation program was used mainly for cases which 
involved anisotropic materials since isotropic wall results could be obtained much 
more cheaply using modified 2D programs. The correctness and the accuracy of the 
3D program were verified against the 2D results of Yeo (1988, 1990) (for isotropic- 
and anisotropic-material layered walls respectively) and the 3D results of a modified 
2D isotropic-layer program. Excellent agreement, to 5 or 6 significant digits in the 
eigenvalues, was obtained in most cases. 

The compound matrix method used to obtain the results presented in Yeo (1988, 
1990) could also be adapted to solve the 3D flow stability equations. However, its 
application would involve the derivation of a 20 x 20 compound matrix. The task of 
deriving the components of such a large matrix analytically is both daunting and 
error-prone. Moreover, the polynomial expansion approach has the important 
advantage over the compound matrix method that the eigenfunctions are 
automatically determined with the eigenvalues. 
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The material properties of the compliant walls are specified with respect to the 
velocity scale UE),  the density scale pjd) and a fixed lengthscale L f )  termed the wall 
lengthscale. The velocity and density scales are identical to those employed for the 
flow quantities. For the flow, the lengthscale is the local displacement thickness 
cVd), which varies with the Reynolds number R,. The wall lengthscale Lc)  is 
defined implicitly through the specification of a reference Reynolds number 
R, = Ug)L&d)/vld). In numerical implementation, the overall propagation matrix PO 
(which contains the wall dynamics) is actually computed in the wall lengthscale 
rather than the flow lengthscale. In  fact the PO in the two lengthscales are related 
as follows 

The superscript w denotes computation with respect to the lengthscale L&d) and M, 
is the diagonal matrix Diag { r ,  r ,  r ,  1 , 1 ,  l} (where r = R,/R,) which effects the change 
of lengthscale. With (42), the numerical implementation of the boundary conditions 
(25) is based on 

(43) 
This implementation has the advantage over one in which PO is calculated in the flow 
lengthscale that the material properties and layer thickness of the wall need not be 
rescaled when the Reynolds number R, is changed. The reference Reynolds number 
R,  is set to 2 x lo4 for all the results presented in this paper. 

PO = Mi’PO(w)Ms. (42) 

Ww)(z , )  = PO(w)Ms 0, Wt(z,). 

3. Isotropic-material compliant walls 
In this section, we consider the case of compliant walls which are constructed from 

one or more uniformly thick layers of isotropic material. The two-dimensional 
stability of the Blasius boundary layer over such walls has been comprehensively 
studied by Yeo (1988). The 2D study indicates that these walls have significant 
potential for flow stabilization and that suitably designed ones also offer prospects 
for substantial delay of transition. The stability of the same flow to three- 
dimensional oblique wave modes is examined below. 

3.1. SpeciJication of material properties 
The mechanical response of isotropic materials to stresses is governed by two moduli, 
the shear modulus G and the bulk modulus K (52.5.3). Material damping is 
introduced by assuming a Kelvin-Voigt model for the shear modulus G. Dilatational 
(shear-free) deformation is assumed to be elastic so that the bulk modulus K is a real 
constant. The shear modulus is expressed in terms of the material’s elastic shear 
wave speed C, and a damping coefficient d as 

G = pC,Z - iwd, (44) 
where the density p is assumed to be equal to that of the flow in all cases. The 
properties of the isotropic material are therefore determined here by the real 
parameters C,, d and K .  These are specified based on non-dimensionalization with 
respect to wall reference scales : 

(45 a+) 

The thicknesses of the compliant layers are non-dimensionalized by the wall 
lengthscale L&d). 
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3.2. The rescaled equivalent two-dimensional problem 
In studying the linear stability of oblique wave (3D) modes, exp [i(ax, + /3x2 - wt)], in 
flows over isotropic-material compliant walls, $2.6 immediately tells us that we need 
only consider the eigenvalue spectrum of the equivalent 2D problem comprising the 
0s equation (11 a), with the scaled-down basic velocity field V(x:) = U(x,) cose, and 
associated boundary conditions. The instability of a 3D mode is determined only by 
the instability of its in-plane motion. 

Let us now rescale the equivalent 2D problem using the free-stream speed of its 
scaled-down velocity field V g )  = U g )  cos 8 as the reference velocity scale. We note 
that the value of V g )  depends on 8. The 0s equation (11 a) then becomes 

(a;”’ - 2(at)2Ci + (at)4C3), 
1 

(U-c)(a;-(at)2a3)-vU”.ii, = 

where 8, = R, cos 8. Equation (46) is just the 0s equation governing the stability of 
a 2D wave mode of wavenumber at riding on the original mean flow field U(x,) at the 
reduced Reynolds number of Ba. The change in the velocity reference scale to V g )  has 
important consequences for the wall properties. The non-dimensionalized properties 
of the wall given by (44) and (45) now become 

6, = c, (coSe)-l, d = d(cos8)-l, 6 = ~ ( ~ ~ ~ 8 ) - 2 ,  I? = K(cose)-2. ( 4 7 d )  

Rescaling therefore has the effect of making the wall stiffer by increasing the stifness 
moduli such as 0 and K by a factor of (cos e)-2. Since changing reference scales does 
not actually affect the physical essence of the problem, the above shows that 
the stability problem associated with the propagation of an oblique disturbance 
wave mode exp[i(az,+/3x2-wt)] in the basic velocity field U(z , )  a t  a given 
Reynolds number R, is formally equivalent to the stability problem of the 2D 
mode exp [iat(x, -ct)] perturbing the same velocity field over a stiffer compliant wall 
at  the lower Reynolds number of 8,. We refer to the increase in stiffness as the 
stifSness rescaling effect and the rescaled problem represented by (46) and (47) as the 
rescaled equivalent 2D problem. The reduction to the rescaled equivalent 2D problem 
allows known 2D results and trends to be brought to bear on the 3D case. 

The stability problem for 2D wave modes (/3 = 0) is obviously identical to its 
rescaled equivalent 2D problem, since 8 = 0’ then. When 8 is increased from zero to 
a finite value (that is, going from a 2D to an oblique mode) at  a fixed R,, the rescaled 
equivalent 2D problem has a decrease in its 8, and an increase in the stiffness of its 
wall. Reduction in the Reynolds number may generally be regarded as having a 
favourable influence on stability. The effect of increased wall stiffness on stability, 
however, depends on the specific class of instability in question. For TS instability, 
it is well known that its 2D modes are destabilized by an increase in wall stiffness. 
With such opposing influences acting on the stability of the rescaled equivalent 2D 
modes, it is difficult to ascertain without detailed calculation whether 3D TSI wave 
modes are likely to be more dominant than 2D TSI modes at the same R,. The 
relative dominance would undoubtedly depend on the compliant nature of the wall. 
The compliance-induced instabilities (the CIFI, also termed FISI in works by 
Carpenter), on the other hand, are suppressed by an increase in wall stiffness. It is 
recalled here that the travelling wave flutter (TWF) and the static divergence (SD) 
instabilities are important members of this class. Since both factors tend to favour 
its stability, the worst case instability for CIFI is most likely to be presented by 2D 
wave modes. Hence, if the 2D CIFI modes of an unstable branch can be effectively 
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FIGURE 2. Variation of the 0-critical Reynolds number Rr(0 )  with the propagation angle 8 for the 
TSI regime of some single-layer isotropic-material walls. h = 1.0: -----, C, = 1.0; --.-.-*, 
C, = 0.7 ; .... ......, C, = 0.5. . *-' .-. .-, h = 5.0, C, = 0.7; -, rigid wall. In all compliant cases, 
d = 0.0049 and K = 500. 

suppressed, there should be no 3D CIFI modes of the same branch at  the same R,. 
If the purpose is to eliminate the CIFI, two-dimensional study would generally be 
adequate. For this reason, attention is given below mainly to the consideration of the 
more complicated case of 3D TSI rather than to 3D CIFI. 

3.3. Critical Reynolds number 
We begin our study of 3D TSI wave modes over isotropic material walls by 
considering the effects wall compliance has on the critical Reynolds number of the 
TSI regime. The critical Reynolds number is denoted by R$ and is the value below 
which no linearly unstable TS modes exist. We introduce the additional notation 
R$(O), the &critical Reynolds number, to denote the critical Reynolds number taken 
over the subclass of TSI modes which have propagation angle O = tan-'(/l/a). Clearly 
RY(6J) 2 R,C'. Note that R$(O) is directly related to the critical Reynolds number of 
the rescaled equivalent 2D case, denoted by Bg'(O), by @ ( O )  = RY(8) cos8. 

Figure 2 shows the variation of the &critical Reynolds number for a number of 
single-layer compliant walls ; the curve for a rigid wall is also shown for comparison. 
The critical Reynolds number for 2D modes R,C'(O") on a rigid wall has the value of 
519.06. Since the stiffness of a rigid wall is unaffected by the scaling factor (cos@-~, 
e ( B )  for a rigid wall has the constant value of 519.06, irrespective of the value of 
0, and the curve is hence simply given by R,C'(O) = 519.06(cos8)-'. The critical 
Reynolds number RF for the 3D TSI regime on a rigid wall is therefore equal to 
519.06 and belongs to a 2D eigenmode (0 = 0"). The effects of wall compliance on the 
R$(O)-curve and the critical Reynolds number R,C' can also be seen in figure 2. Since 
wall compliance favours the stability of TS modes, the Rr(O)-curves for all the 
compliant walls are found to lie to the right of the rigid-wall curve. For the compliant 
wall with thickness h = 1 .O and elastic shear wave speed C, = 1 .O, the RF also belongs 
to a 2D mode. For the softer walls (h  = 1.0) with C, = 0.7 and 0.5, however, the R$ 
can be seen to be given by oblique wave modes. At C, = 0.7 for example, R$ is 
approximately 873 and belongs to a mode with 0 x 34", compared with Rr(O) x 935 
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FIGURE 3. a-B sections of the neutral stability surfaces for a single-layer isotropic material wall 
with h =  5.0, C, =0.7, d =0.0049 and K = 500. - , TSI; -----, CIFI. Partial hatching 
denotes unstable side of neutral curve. 

for 2D modes. As the propagation angle 8 becomes large, all the Ry(8)  curves 
approach the rigid-wall curve asymptotically. This has a simple explanation. When 
8 is large (approaching to go"), the scaling factor ( c o s ~ ) - ~  is very large, so tha: the 
walls of the rescaled equivalent 2D cases become very stiff and their associated Ry(6)  
approach the rigid-wall value of 519.06. The Ry(B)-curves consequently tend 
towards the rigid-wall curve of 519.06(cos 8)-l as 8 becomes large. The Ry(6)-curve 
for a thick compliant layer with h = 5.0 (C, = 0.7) is also given in figure. 2 for 
comparison with the case with h = 1.0. Increase in layer thickness makes the wall 
more compliant. According to 2D studies, such as Yeo (1988), this will raise the 2D 
critical Reynolds number, as reflected in the results shown in figure 2. The curves for 
the two thicknesses, however, converge rapidly as the propagation angle 8 becomes 
moderately large (about 35"). This behaviour can be explained with reference to the 
2D results of Yeo (1988). As 8 increases, the accompanying increase in the stiffness 
of the wall of the rescaled equivalent 2D case makes it increasingly difficult for the 
disturbance waves to penetrate the walls to great depths; see $4.2 of Yeo (1988). The 
full depth of the thick compliant layer (h  = 5.0) is therefore not perceived by the 2D 
modes of the rescaled problem, and consequently also not perceived by their 
associated 3D modes at large 8. The close identity of the two curves for 8 > 35" 
indicates that the disturbances associated with those eigenmodes of the thick layer 
with 8 > 35" probably penetrate the wall to a depth of less than 1.0. 

3.4. The a-/3 sections of neutral stability surfaces 
Figure 3 shows the a-/3 sections of the neutral stability surface for the thicker 
compliant-layer wall (h  = 5.0, C, = 0.7) at various R,. Partial hatching marks the 
side of the neutral curves that corresponds to unstable modes. It can be seen that 
there are no unstable 2D TSI modes at R8 = 1000. This is consistent with Ry(0)  being 
greater than 1000 for the wall, see figure 2. At the other R,, the a-width of the TSI 
domains increases as we go from 2D to 3D modes (p =k 0). This indicates that the 
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FIQURE 4. a-/? sections of the neutral stability surface for a rigid wall. 
_ _ _ _ _  , w,-contours at R, = 4000. 
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most unstable or dominant modes are most probably 3D. This was indeed confirmed 
by actual calculations of the temporal growth rates for both 2D and 3D modes. Such 
results are quite typical of walls with a significant OF high degree of compliance; say 
C, < 0.8 and h many times the displacement thickness of the boundary layer. To 
avoid crowding figure 3, details on growth rates have not been included. Growth-rate 
data are given for other compliant walls in later figures. The a-p sections of a rigid 
wall are given in figure 4. By comparing figures 3 and 4, it is easy to see that the 
compliant wall in question has much smaller TSI domains at corresponding R,. As 
may then be expected, the compliant wall has temporal and spatial growth rates 
which are significantly less than those of the rigid wall at corresponding R,. Next we 
note that the maximum propagation angles (largest /3/a ratios) for the TSI modes of 
the compliant wall at R, = 2000 and 4000 are approximately 74.5" and 82.4' 
respectively, very close to the respective values of 74.96' and 82.54' for the rigid wall. 
This again is a consequence of the stiffness rescaling effect which makes the wall 
appear very stiff to oblique waves propagating at large 8. 

The neutral a-p of sections of the CIFI regime of the compliant wall taken at 
R, = 2000 and 4000 are also displayed in figure 3. These are travelling-wave flutter 
(TWF) instabilities. The static divergence (SD) instabilities are of no consequence 
here, being important only in very soft walls with high damping (see Yeo 1990). The 
maximum propagation angles 8 for unstable modes at the two Reynolds numbers of 
2000 and 4000 are respectively less than 24' and 31'. The reduction in the 
disturbance growth rates with increase in 8 is fairly rapid. The compliant layer has 
a lowest free surface wave speed of cR x O.9553Ct. The wall of the rescaled equivalent 
2D case therefore has 

Since the 2D CIFI are known to be well suppressed when the lowest free-surface wave 
speed of the wall is greater than the free-stream velocity (Ye0 1988), this means that 
the rescaled 2D case will have no CIFI when EE > 1.0. The consequence of this is that 
there should be no oblique CIFI modes with propagation angle 8 > 48'. 

zR x o.9553ct(C0s 8)-1. 
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FIQURE 5. a-B sections of the neutral stability surface for the TSI regime of a single-layer isotropic 
material wall with h = 5.0, C, = 0.7, d = 0.0588 and K = 500. o,-contours: .-*-*-* , R, = 1000; 

, R, = 4OOO. _____ 

3.5. Effects of wall damping 
We next examine the effects of material damping on the relative dominance of 2D 
and 3D instability modes. Figure 5 shows the a+ sections for the thick compliant 
layer of figure 3 when the damping coefficient is increased more than ten times to 
d = 0.0588. The strong CIFI which were present at d = 0.0049 (figure 3) are effectively 
suppressed at this relatively high level of material damping. In fact, the 2D CIFI are 
well suppressed at  d = 0.0588 according to figure 13 of Yeo (1988). We therefore do 
not really expect to find oblique CIFI modes of any consequence. 

Damping, in general, has a destabilizing influence on the TSI. Its relative influence 
on the 2D and 3D instability modes can be seen by comparing figures 3 and 5. We 
shall examine the lower Reynolds number case first. At  R, = 1000, the increase in 
damping introduces 2D TSI modes which were absent a t  d = 0.0049. It is evident 
from the temporal amplification contours shown that the high level of damping has 
in fact made the 2D modes more dominant than the 3D modes at R,= 1000. 
Moreover, calculation also indicates that R,C' now belongs to a 2D mode. In  general, 
material damping has been found to have a stronger destabilizing effect on 2D TSI 
compared t o  3D TSI. Part of the cause of this can be found by noting that for the 
rescaled equivalent 2D case, the damping coefficient d" of the material scales 
according to the factor (cos8)-'. The relaxation time constant .? = d"/pc? of the 
material then scales as cos8. The relaxation time constant is a commonly used 
measure of the quality of damping. (For example, for the Voigt damping model, the 
relaxation time constant T is the time it takes for the strain to attain (1  - e-l) of the 
value of the steady-state strain in a standard creep test.) As we increase 8, the 
rescaled equivalent wall becomes qualitatively less damped. Moreover, when the 
damping coefficient d is increased, the rescaled equivalent 2D modes also experience 
a smaller absolute increase in the relaxation time of the material, proportional to 
cos 8. If the increase in T is say 1 s for 2D modes, then the increase in 7 for the rescaled 
2D equivalent of an oblique wave propagating a t  8 = 60" would be 0.5 s. This 
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FIQURE 6. a-/3 sections of the neutral stability surface for the TSI regime of a four-layer isotropic 
material wall. ------, w,-contours at R, = 4000. Compliant well data : 

Layer no. h ct d K 
1 0.5 1 .o 0.0049 500 
2 1.5 0.8 0.0049 500 
3 1 .o 0.4 0.0294 0.267 
4 0.5 0.8 0.0049 500 

qualitatively explains the smaller destabilizing influence of material dampinkon 3D 
TSI modes. The perceived stiffness of the wall, as governed by the value of C, or d,  
also has an important bearing on the effects of wall damping. As 0 becomes large, the 
rescaled wall becomes very stiff. For a very stiff wall, damping can only have a 
minimal effect on stability because the wall can hardly respond to perturbations. 
Thus the effects of any changes in damping will be small for oblique TSI with large 
propagation angle. 

For higher R,, the difference in the damping level of the two walls produces smaller 
differences in their respective a-@ sections. At R, = 4000, these sections of the two 
walls are almost identical, implying that the amplification rates of the TSI modes are 
nearly the same for both walls at  this Reynolds number. This is consistent with the 
behaviour noted in Yeo (1988) that material damping has only a small destabilizing 
effect on the TSI modes a t  high Reynolds numbers. This in its turn is related to the 
fact that the TSI modes at high R, generally have low frequency. The scaling effect 
of 0 on the relaxation time constant and on the wall stiffness of the rescaled 
equivalent problem also plays a role in lessening the effect of any difference in 
damping level on the 3D modes. The consequence of this indifference to material 
damping is that the 3D TSI modes may remain dominant over the 2D modes even 
at high levels of damping when the R, is large. This is reflected in the a-/3 section for 
R, = 4000 in figure 5.  

3.6. Transition to turbulence 
We next consider a wall which has shown considerable promise for delaying 
transition to turbulence according to the 2D study of Yeo (1988, $5.3). This is a four- 
layer compliant wall, which bears some geometric similarity to the original walls of 
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FIQURE 7. The maximum amplification envelopes for the four-layer wall of figure 6 for TSI waves 
with spanwise wavenumber /3, = 0, 0.5 and 1.0. -, Maximum amplification envelope; -----, 
total amplification curve at frequency F = f x 10-O. 

Kramer (1960). The important 2D CIFI for this wall are well suppressed; in 
particular, 2D static divergence is unlikely to be a problem according to the results 
given in Yeo (1990). The wall has a transition Reynolds number 

RE x 16.27 x 106(R8 x 6940) 

based on the well-known en-criterion (n  taken to be 8.3) applied to the maximum 
growth factor for 2D TSI wave modes. The corresponding value for a rigid wall is RE 
x 2.84 x 106(R,, x 2900), giving a ratio of transition distances equal to 5.73. Because 
of the absence of 2D CIFI, we do not expect to find 3D CIFI of any consequence. 
Figure 6 shows the a-/3 sections of the TSI regime of the four-layer wall; the 
thicknesses and material properties of the layers are given in the caption to the 
figure. Some contours of temporal growth rates w1 are also given for R, = 4000. It is 
observed that the 3D TSI modes become more and more dominant over the 2D 
modes as we get to higher R,. At R, = 4000, the a-width of the TSI regime grows 
rapidly as we go from 2D to increasingly oblique 3D modes. The fastest growing 
temporal mode at R,=4000 has growth rate ~ ~ x 0 . 0 0 1 7  and propagates at an 
oblique angle of 0 x 45". A rigid wall, on the other hand, has a maximum oI a t  
R, = 4000 of approximately 0.0042, which belongs to a 2D wave mode. The dominance 
of the 3D modes over the 2D ones in the range of higher R, suggests that a calculation 
of maximum disturbance growth factor based solely on 2D wave modes is likely to 
underestimate the true growth potential of a general disturbance, comprising both 
2D and 3D wave modes. For the four-layer wall, this is confirmed in figure 7, which 
shows the maximum amplification factor envelopes for 2D wave modes and selected 
classes of oblique wave modes. The growing oblique wave modes are assumed to have 
fixed dimensional wavenumber Pd) = /3,.,(L$?)-l (recall that L.&") is the fixed wall 
lengthscale). The envelopes are determined from the total (integrated) amplification 
curves of fixed$, downstream-growing spatial wave modes driven at fixed values of 
the frequency F = W/R8 = dd)dd)/( Ug))2 .  The maximum growth factor (given by the 
envelope) of e8s3 is reached by the oblique modes with /3w = 0.5 at 

R, 6900 (R, Z 11.76 x 10'). 
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This is about 1000 less than the value of R, x 6940 for the 2D modes. For the oblique 
wave modes with p, = 1 .O,  the maximum growth factor only manages to reach about 
e" a t  R, x 4700, followed by the decay of the disturbance modes thereafter. The 
streamwise Reynolds number R, x 11.76 x 10" required by the oblique modes with 8, 
= 0.5 to reach the growth factor of e8.3 can be regarded as giving an estimate of the 
kind of transition distance that we may expect to see on the four-layer wall (the 
actual transition Reynolds number will of course be less than this figure). It 
represents a substantial reduction from the 2D value of 16.27 x lo", but it is still 
considerably larger than the value of 2.84 x 10" for a rigid wall. This result highlights 
the fact that predictions based on 2D modes may substantially overestimate the 
transition distances on soft compliant walls. However, for many compliant walls, 
such as the four-layer wall examined here, the potential for lengthy delay of 
transition still exists in considerable force (by the same e8.3-criterion) even when the 
growth of 3D modes is taken into account. For the four-layer wall, this is not at all 
surprising because the disturbance growth rates for its 3D modes are so much lower 
than those for a rigid wall; a t  R, = 4000 for example, the maximum temporal and 
spatial growth rates for the wall are wi x 0.0017 and -ai x 0.006 (real 8) respectively 
compared with the corresponding figures of 0.0042 and 0.0125 for a rigid wall. 

Some comments on the use of downstream-growing spatial modes (real spanwise 
wavenumber) are now in order. A possible objection to the use of such modes in 
estimating transition location is that they may not yield the worst-case growth. In  
fact, such modes would appear to be more appropriate to situations in which the 
disturbance is produced by a long vibrating ribbon, set a t  an angle to the free stream, 
or normal to the free stream with induced spanwise periodicity (corresponding to a 
symmetric pair of oblique waves). The disturbances responsible for natural transition 
tend to be much less regular. For disturbances of general form, methods based on 
wave packet considerations have generally been regarded as more suitable for the 
determination of worst-case growth, being used for correlation with experiments and 
transition prediction. The approaches of Cebeci & Stewartson (1980) and Nayfeh 
(1980) are based on asymptotic wave packet analysis. To find the maximum growth 
by these methods, one has to follow the growth of the waves (say of fixed frequency) 
along their paths of growth defined by the ray condition that tan q5 = - act/i3/3 be real, 
where 4 is the angle the group velocity vector makes with the stream direction. The 
downstream disturbance growth rate is given by - (ai + pi tan 4) and the maximum 
is selected if more than one ray is indicated for a given wave. For correlation or 
prediction of natural transition, maximization of disturbance growth with respect to 
frequency will also be necessary. The numerical implementation of the full scheme, 
briefly described in Cebeci & Stewartson, is highly complex and expensive. For 3D 
flow fields, such as a rotating disk boundary layer, the full approach may be 
imperative. For strongly unidirectional flow such as the Blasius boundary layer a t  
large R,, disturbance growth tends to be predominantly in the downstream direction. 
This is certainly the case for rigid walls. For plate-type compliant walls, Joslin et al. 
(1991) employed a version of the wave-packet scheme. They found that the group 
velocity angle 4 is very small except near the lower TS branch where the growth rates 
are themselves also small. This indicates that the disturbance growth is mainly in the 
downstream direction. In  fact, after due study, they chose to consider only 
downstream-growing (pi = 0) modes, as we did above, in their en-calculations; the 
main difference lies in their maximization of -ai. On the whole their results lend 
support to our use of downstream-growing modes to provide a qualitative assessment 
of the relative importance of 2D versus 3D instabilities in determining transition. It 
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is thus believed that the major conclusions we have reached above (and in Yeo 1986) 
concerning the reduction in transition delay from that based on 2D calculations, and 
the potential of compliant walls to significantly delay transition relative to a rigid 
wall, are essentially correct. Joslin et al. arrived at similar conclusions. 

4. Anisotropic-material compliant walls 
The fully three-dimensional theory of $2 is applied to two anisotropic-material 

walls in this section. The first set of results concerns a two-layer wall comprising a 
thin layer of stiff isotropic material on a thick layer of transversely isotropic material 
(as in figure 1). The two-dimensional stability of Blasius boundary-layer flow over 
such walls has been studied in detail by Yeo (1990). Here we are interested in the 
three-dimensional aspects of flow stability and its consequence for the delay of 
transition. The second set of results pertains to a single-layer orthotropic material 
wall. The orthotropy model admits materials which possess different shear moduli in 
the different planes of its orthogonal frame. This feature of the orthotropy model is 
exploited here to create a wall which has reduced shear stiffness in the plane 
transverse to the mean-flow direction. The orthotropic wall is found to have 
significantly improved 3D Tollmien-Schlichting stability over the corresponding 
isotropic case. The stress-strain laws for the transverse isotropy and orthotropy 
models have been presented in Q 2.5 in their respective material-property frames. 

4.1. A transversely isotropic-material wall 
Since our interest concerns the type of wall studied by Yeo (1990), we shall adopt the 
assumptions and specifications for material properties employed there. These are 
briefly described below before we go on to the stability results. Of the five material 
moduli - shear moduli G and G ,  Poisson’s ratios v and v’ and Young modulus E’ (see 
$2.5.2) which govern the stress-strain behaviour of transversely isotropic material - 
we assume for-simplicity that 

G = O ’  and v = v ’  
We further expressed the shear modulus G in terms of an elastic shear wave speed C, 

(49) 
and a damping coefficient d as 

as for the isotropic case. The Poisson’s ratio is given in terms of G and a modulus K 
= pCt-iiwd, 

3K - 2G 
2(3K+ G) 

V =  

Material composites which are derived by embedding a parallel family of straight 
fibres of a stiff material in a soft isotropic matrix form an important class of 
transversely isotropic materials. The assumption that G = G and equation (50) for 
v are appropriate when the fibre material constitutes a very small fraction of the total 
volume of the material. C, andK can then be interpreted as being given by the elastic 
shear wave speed and the bulk modulus of the isotropic matrix. The assumption that 
v = v’ confers a significant degree of compressibility to the material. The Young’s 
modulus along the axis of isotropy (or fibre direction) E is assigned the complex form 

E = E, + i(E)i, of 

where E = 2G( 1 + v) and E, is the elastic part of E’. The imaginary part of E ,  (E)i ,  is 
introduced to impart damping to uniaxial extension/compression along the axis of 
isotropy, of an amount equal to that the material would experience if it were 
isotropic. The material in fact becomes isotropic (with Young’s modulus E )  if we set 
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FIGURE 8. The neutral stability curves of the TSI regime at various spanwise wavenumbers BW for 
a two-layer anisotropic wall. Layer 1 : isotropic material, h = 0.25, C, = 3.0, d = 0.0049, K = 1200. 
Layer 2 : transversely isotropic material with axis of isotropy in the (zl, s,)-plane, h = 4.75, 
C, = 0.5, d = 0.0392, K = 500, E, = 30.0, A,  = -775". 

E, equal to the real part of E so that E = E .  The material properties of the 
transversely isotropic material considered here are therefore specified by the four real 
parameters 

(p = pf) ,  only one more than for isotropic material. They are assumed to have been 
non-dimensionalized as in (45) for isotropic materials. The reader will have noted 
that the above specification for material properties has been designed to provide a 
natural consistency with the specification for isotropic materials. The interested 
reader is referred to Yeo (1990) for further details. 

Physically, the behaviour of a transversely isotropic material in shear is 
determined by the shear moduli G and G .  With G = G ,  the material behaves 
isotropically in shear. The extension/compression of the material along the fibre axis 
is governed by the Young's modulus E .  A large value for E, (real part of E') makes 
the material very stiff to extension/compression along the fibre axis. In fact, Yeo 
(1990) was concerned with the study of a class of compliant walls which exhibit 
strong resistance to extension/compression along a given direction (the fibre axis). 
The fibre axis was inclined (within the (s,,z,)-plane of the wall) at  an angle to the 
direction of the flow ; see figure 1. The strong resistance to stretching along the fibre 
axis (high E,) was designed to induce disturbance Reynolds stress -- of 
predeterminable sign in the flow as a means to influence the 2D stability of the flow. 
Here we are interested in the 3D aspects of flow stability for a typical two-layer case 
which shows potential for delaying transition. 

The two-layer wall of interest comprises a thin layer of stiff isotropic material 
attached onto a much thicker layer of transversely isotropic material with fibre axis 
inclined at angle A,  = - 75", see figure 1. The large value of E, = 30 strongly resists 
the displacement of the surface along the direction of the fibre axis. The 2D and 3D 
CIFI (the TWF and SD) for this wall are well suppressed. Figure 8 shows the neutral 
curves for the two-layer wall for 2D TS wave modes (pw = 0) and 3D TS modes of 
fixed spanwise wavenumber pW = 1.0,2.0 and 4.0. The detailed properties of the wall 
layers are given in the caption to the figure. It can be seen that the unstable wave 

Qt, d,  K ,  E,  
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modes with /3, = 2.0 and 4.0 have a fairly limited Reynolds-number range. Such 
oblique modes are therefore not expected to grow to the same extent in the 
downstream direction as say the unstable modes with FW = 1.0. Figure 9 shows the 
a-/3 sections of the neutral TS stability surface for the same wall at R, = 2000 and 
4000. Temporal growth rate contours are also shown for R, = 4000. The wall is highly 
compliant. Overall, the growth rates are very much less than those of a rigid wall (see 
figure 4). From figure 9, we note that the 3D TSI modes are more dominant than the 
2D TSI modes at the higher Reynolds numbers, such as R, = 4000. We also note that 
the neutral sections are close to those of the rigid wall for large propagation angle 8, 
as for the isotropic cases. The maximum amplification envelopes for 2D TSI modes 
and oblique TSI modes with spanwise wavenumber /3, = 0.5 and 1.0 are given in 
figure 10. For R, from 2000 to 6000, the /Iw = 1.0 modes in fact register a higher 
exponential growth factor than the 2D modes. However, the maximum exponential 
growth factor reached is only about 4.5, significantly less than the 8.3 used as the 
criterion here for determining the approximate location of transition. The 8, = 0.5 
modes, however, register higher growth than the 2D modes, with their envelope 
reaching the exponential factor of 8.3 at R, x 7500 (RE z 19.0 x lo6) compared with 
R, x 8400 (RE x 23.8 x lo6) for the 2D envelope. These results reaffirm the earlier 
(isotropic) finding that calculations based solely on 2D modes tend to overestimate 
the actual transition Reynolds numbers (distances). The transition Reynolds 
numbers obtained by Yeo (1990) are hence on the optimistic side. However, all is not 
lost. The wall studied above and those walls which demonstrated good potential for 
transition delay in Yeo (1990) in fact still possess very considerable potential for 
delaying transition. This is because the growth rates of their 3D modes are very much 
less than those on a rigid wall. The inclusion of 3D modes probably results in 
reductions of 20 to 30% in the streamwise Reynolds numbers R$ from their 
corresponding 2D values. Finally, note also that, in many respects, the 3D stability 
characteristics of the transversely isotropic-material walls studied above and in Yeo 
(1990) follow the same basic trends that we have noted for isotropic walls in the last 
section. 
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FIGURE 10. The maximum amplification envelope for the two-layer anisotropic wall of figure 8 for 
TSI waves with spanwise wavenumber p, = 0, 0.5, 1.0. -, Maximum amplification envelope; 
____-- , total amplification curve at frequency F = f x  lo-'. 

4.2. An orthotropic-material wall 
The results we have obtained so far, for isotropic-material walls in $3 and 
transversely isotropic materials in the preceding subsection, demonstrate that 3D 
oblique TSI modes are generally more dominant than the 2D TSI modes for walls 
which are sufficiently compliant to admit the possibility of significant transition 
delay. While significant delay of transition may still be possible in spite of the 
dominance of the 3D modes (owing to  the growth rates being still considerably less 
than those on a rigid wall), the stability performance of the walls would clearly 
improve if we can suppress the dominance of the 3D TSI modes relative to the 2D 
modes. To suppress the higher growth rates of the 3D TSI modes, we need to go back 
to their cause. The origin of the dominance has been explained in $3.2 in the context 
of isotropic-material walls, for which the factorization and rescaling of the stability 
problem permit more direct comparisons to be made between the stability of 2D and 
3D modes. To recap, the dominance of the 3D TSI modes is caused by the apparent 
increase in the wall stiffness which is brought about as a consequence of the reduced 
velocity field V(z;) on which the oblique waves ride. When the stability problem is 
rescaled by the reduced free-stream velocity V g )  to the standard Squire form (46), 
with the velocity profile U(x;) identical to the 2D case, the wall stiffness moduli are 
scaled up in value by the factor of ( c o ~ O ) - ~ .  This increase in wall stiffness has a 
destabilizing influence on the TSI modes and underlies the dominance of the 3D TSI 
modes, although the effect is ameliorated to some extent by the reduction in the 
effective Reynolds number. I n  the case of an isotropic-material wall, the apparent 
shear modulus perceived by the oblique wave is G(cos 8)-', where G is the actual shear 
modulus of the wall material. To improve the stability of the 3D modes, we need to  
reduce the value of the perceived wall stiffness, which is governed to a large extent 
by the value of the rescaled shear modulus G(cos 8)-2. There is little that one can do 
about the scaling factor. However, the perceived modulus G(cos 0)-2 could be reduced 
if one could reduce the value of G, that  is, making G smaller to compensate for the 
rise in the value of (cos 0)-2 as 8 increases. Therefore a wall which is anisotropic and 
which possesses reduced material stiffness in oblique directions is required. I n  this 
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section, we pursue this idea as a means to reduce the strong dominance of the 3 D  
modes over the 2D modes. Reduced material stiffness in oblique directions is 
achieved here by employing the appropriate orthotropic-material behaviour. 

Let us consider a compliant wall comprising a layer of orthotropic material on a 
rigid base. First, we assume the material-property frame of the orthotropy model to 
coincide with the (x,, z,, x,)-coordinate frame of the stability problem. The 
orthotropic material model is governed by nine independent moduli (see $2.5.1) .  To 
keep the model as simple as possible we assume that 

G,, = G,, = G ,  

El = E,  = E,  = 2G( 1 + v ) ,  

(51 a) 
(51 b)  
(51 4 

v,, = v,, = v,, = v, 

and denote the shear modulus G,, in the (x,,x,)-plane, which is transverse to the 
plane of the mean flow, by G I .  The orthotropic material specified above differs from 
a completely isotropic material only in that the shear modulus in the transverse 
plane GI may be different from the shear modulus G in the other two orthogonal 
planes. If we set GI = G, then we would recover an isotropic material with shear 
modulus G and Poisson's ratio v. For consistency with the material specification for 
isotropic-material walls, we express G ,  GI and v in terms of elastic shear wave speeds 
C,, C,l, damping coefficient d and a bulk modulus K as follows : 

3K - 2G 
= 2 ( 3 K + G ) '  

G = pCt-iiod, G: = p(C:)2-iwd, (52a-c)  

The properties of the orthotropic material are therefore specified by four real 
parameters: C,, C:, d and K ,  with density p = pt. The shear stiffness of the material 
in the transverse (z,,x,)-plane is determined by the real part p(C;)'. We have an 
isotropic material when C,l = C,. 

While the shear modulus for an isotropic material is well-defined and has the same 
value for shearing in any plane, it is not always obvious how the shear modulus ought 
to be defined for an anisotropic material when the plane in question is not one of the 
principal planes of symmetry. This is because the shear deformation in a non- 
symmetry plane may be influenced by shear stresses acting in the other planes. 
Furthermore, the shear stress acting in a non-symmetry plane not only produces 
shear strain within the plane, but may also simultaneously induces shear strains in the 
other planes, such as planes transverse to the original plane. Thus for the orthotropic 
material in question, tensor transformation shows that the shear strain ei3 in the 
oblique (zi,xi)-plane is in fact related to the in-plane shear stress a& and the 
transverse-plane shear stress at,, as follows : 

sin 8 cos 8 a;,. 1 G sinZ 8 + G1 C O S ~  8 (G-G') 
2& = [ GG' ]ct,l+[ GGl (53)  

To have some approximate idea how stiff the material is to shearing in the (x:,x",- 
plane, we assume a situation in which a sample of the material is subject only to the 
in-plane shear stress ail,; at,, = a:, = 0.  Using (53) ,  we then define the stiffness to 
(modulus of) shearing as the ratio of applied stress to the resultant strain in the same 
plane (similar to the conventional definition for shear modulus), that is 4 , / ( 2 e : , ) ,  
and denote this ratio by 

GGI 
G o y e )  = 

G sin2 8+ G1 cos2 8' (54)  

Gobl(B) is termed the oblique shear modulus here and its magnitude is a measure of the 
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Oblique angle, 8 (deg,) 

FIQURE 11. Shear moduli in the (x:, %)-plane. Elastic-orthotropic-material wall with G'/G = 0.25: 
-, Gob' ; e-, Gobl(cos 19-*. Isotropic-material wall : -----, G ;  e---, G(cos O)+. 

resistance (stiffness) of the material to shearing in the (xi, xi)-plane when subject to 
shear stress uil acting in the plane. We note that this is an approximate measure 
because in an actual problem ci2 may not be zero and its value may increase or 
decrease the actual strain produced according to (54). When 8 = 0", GOb1 = G and 
when 8 = 90°, G O b 1  = G I  as we would expect. If G > G I ,  which is the case of interest 
here, Gob'(8) is a monotonically decreasing function of 8 for 8 between 0 and 90". This 
affirms our intuitive feeling that if the shear modulus G* in the transverse (xz ,x3 ) -  
plane is made less than the shear modulus G in the (xl,x3)-plane of the mean flow, 
then the 'shear modulus' in the oblique-wave plane (xi ,xi)  decreases towards G* as 
the oblique-wave angle 8 is increased. Figure 11 shows the variation of Gob] with 8 
for G*/G = 0.25 (G:/C, = 0.5) (zero damping assumed), corresponding to the case 
studied below. GOb1 decreases monotonically from the value of G to G I  as 8 varies 
from 0 to 90°, while the shear modulus remains constant at G for an isotropic 
material. The rescaled moduli Gobl(cos 8)-2 for the orthotropic case and G(cos 8)-2 for 
the isotropic case are also depicted : that the isotropic case rises monotonically and 
rapidly as 0 is increased, while for the orthotropic case it is actually less than G for 
8 up to about 55". 

Results are given here for an orthotropic layer of thickness h = 5.0 backed by a 
rigid base. The elastic shear wave speeds C, and C,l for the mean-flow and transverse 
planes are 0.7 and 0.35 respectively. The damping coefficient d = 0.0098 and the bulk 
modulus K = 500.0. The ratio GI /G  based on the elastic part of the shear moduli is 
0.25. Figure 12 shows the neutral a-/3 sections of the TSI regime for the orthotropic 
walls at R, = 2000 and 4000. Also shown are the corresponding a-/3 sections for the 
isotropic case which has C, = C t  = 0.7. Comparison between the two sets of results 
is rendered easy here because the selection of properties for the orthotropic material 
made the orthotropic wall behave exactly like the isotropic wall to 2D (/3 = 0) waves 
and the two walls have identical 2D flow stability characteristics. It is observed that 
for both Reynolds numbers, the orthotropic-material wall, with its reduced 
transverse shear stiffness, has unstable TSI regimes which are noticeably narrower 
than those of the isotropic wall. The narrowing of the a-width occurs mainly on the 
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FIQURE 12. a+ sections of the neutral stability surfaces of the TSI regimes for the orthotropic- 
material and the isotropic-material walls. -, Orthotropic case with h = 5.0, C, = 0.7, C,l = 0.35, 
d = 0.0098, K = 500;  -----, isotropic case with h = 5.0, C, = 0.7, d = 0.0098, K = 500. 
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FIUURE 13. The maximum temporal growth rate wi as a function of spanwise wavenumber /3 for the 
walls of figure 12; maximization with respect to wavenumber a. -, Orthotropic case; -----, 
isotropic case. 

upper branches of the neutral boundaries, while the lower branches are nearly 
identical for the two walls. The decrease in the size of the unstable regimes shows that 
both the temporal and downstream spatial growth rates for the orthotropic-material 
wall are lower than those for the isotropic-material wall. The maximum temporal 
growth rate wi, distributed as a function of the spanwise wavenumber /3, for the two 
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FIGURE 14. a-/3 sections of the neutral surfaces of the primary CIFI regimes for the orthotropic- 
material and the isotropic-material walls. -, Orthotropic case ; -----, isotropic case ; --.-.-. , 
orthotropic case with d = 0.0196 (R, = 4000). 

walls are compared in figure 13. For the isotropic case, the strong dominance of the 
3D modes over the 2D ones is clearly evident a t  both the Reynolds numbers of 2000 
and 4000. This dominance is seen to be greatly reduced, though not eliminated, in the 
case of the orthotropic-material wall. At R, = 4000, the maximum wi for the 3D 
modes of the orthotropic wall is nearly equal to that for the 2D modes. At even higher 
Reynolds numbers, the 2D modes may be expected to become the more dominant 
ones. The reductions in the 3D growth rates from corresponding isotropic values are 
in fact quite significant. A further small decrease in the transverse shear modulus GI 
or the elastic shear speed C,l is sufficient to render the 3D modes less dominant than 
the 2D ones for Reynolds numbers above 3000. 

The improved stability of the 3D TSI modes for the orthotropic-material wall over 
that of the isotropic-material wall is not without its cost. The decrease in the stiffness 
of the wall in the oblique-wave planes can destabilize oblique CIFI (both TWF and 
SD) wave modes, and may even bring into existence new 3D CIFI regimes if the 
shear stiffness in the oblique planes is reduced sufficiently. This destabilization of the 
CIFI regimes can be seen in figure 14 which illustrates the neutral a-/3 sections of the 
primary CIFI regimes, a TWF, for the two walls. Fortunately, in this and many 
other cases, the enhanced TWF regimes brought about by reduced transverse wall 
stiffness can be suppressed by increasing the damping coefficient d of the material. 
An increase in the value of d from 0.0098 to 0.0196 for the orthotropic-material wall 
is sufficient to suppress the TWF regime a t  R, = 2000. The same increase greatly 
reduces the size of (and hence the growth rates in) the TWF regime a t  R, = 4000; see 
figure 14. A further increase in the value of d to say 0.025 is sufficient to suppress the 
TWF at R, = 4000. SD instability is not expected to be important a t  the present level 
of stiffness and damping (see $3.5 of Yeo 1990). With the CIFI under control, the 
orthotropic case (C,‘/C, = 0.5) with its considerably subdued 3D TSI modes may be 
expected to perform better than the isotropic case (C,‘/C, = 1.0) in terms of 
transition delay. Increase in the damping, however, may not have the above desired 
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effect on the 3D CIFI if C; is very low. A coalescence-type instability between 3D 
CIFI (TWF) and TSI modes, similar to that already encountered in the 2D stability 
study of isotropic-material walls (Ye0 1988), could well set in. 

The results presented in this section demonstrate that the adverse effect imposed 
on the stability of 3D TSI wave modes by the apparent increase in wall stiffness can be 
greatly ameliorated, if not overcome, by the employment of the appropriate type of 
material anisotropy. 

5. On surface-based models and optimization 
5.1. The three-dimensional stability of surface models 

The absence of unstable vertical vorticity modes and the reducibility of the three- 
dimensional stability problem to a rescaled equivalent two-dimensional one are 
properties generic (model-independent) to walls which behave isotropically with 
respect to all directions in the (xl, 2,)-plane. Oblique wave modes over isotropic plate 
and membrane surfaces are therefore subject to the effects of stiffness resealing and 
reduction in effective Reynolds number. In the case of isotropic plates, the flexural 
rigidity perceived by an oblique wave mode is scaled in magnitude by the factor 
(cos O)-z ; the same scaling factor also applies for the tension of an isotropic membrane. 
Recalling the general similarity in the 2D stability behaviour of these surface models 
and layered walls, we can conclude with reasonable confidence that much of the 3D- 
related trends that we have elicited for isotropic-material walls in $3 are also 
applicable to isotropic plate and membrane surfaces. .This similarity in 3D stability 
behaviour has now been confirmed in the recent work of J o s h  et al. (1991). 

Plate and membrane surfaces can also be endowed with anisotropy. A plate with 
reduced flexural rigidity in the spanwise direction can be achieved through the use 
of an orthotropic plate model. A membrane with reduced spanwise stiffness can in 
theory be obtained by reducing the tension in that direction. It is presumably also 
possible in theory to have an anisotropic spring foundation. The 3D stability 
behaviour we have noted in $4.2 for an orthotropic viscoelastic layer is broadly 
expected to hold for these surfaces, although there can certainly be differences in the 
details. 

The expected similarity stems from the realization that in both the 2D and 3D 
situations, the 0s equation ( l l a )  holds the key to flow instability, and the W 
equation ( 1  1 b) plays only a secondary role and sometimes no role at all. This is 
because the &:-fluctuation, governed by the VV equation, is not able to draw energy 
directly from the basic flow, and relies upon the presence of a co-existing 0s mode 
for its growth. This is readily appreciated when one derives the energy equation 
governing the &!-fluctuation from the W equation or its equivalent. Within the flow 
domain, the anti-plane velocity component, &\, governed by the VV equation, 
cannot influence the course set by the 0s equation. In fact, it is the other way round : 
the $!-fluctuation is driven by the 0s mode. The VV equation can only affect the 0s 
mode via the boundary to the flow domain, that is via the compliant wall, and then 
this is only possible in the case of anisotropic walls where there is in general a non- 
trivial coupling between the in-plane and anti-plane components of displacement (see 
$2.6). For an isotropic wall, where such coupling is absent, the VV equation has 
absolutely no influence on linear (non-resonant) instability. The inability of the VV 
equation to extract energy directly from the basic flow underlies the absence, 
established in $2.6, of temporally growing iii-eigenmodes for the rigid and isotropic 
walls. The role of the VV equation may become significant, however, in cases where 

19 FLM 238 



572 K .  8. Ye0 

the coupling between in-plane and anti-plane wall displacements is strong. But in 
any case, it is clear from the above that this influence will be secondary to the direct 
interaction between the anisotropic wall response and the oblique OS equation. For 
the interaction, which strongly determines the flow stability, the perceived stiffness 
of the wall in oblique directions is crucial. Since this perceived wall stiffness is a 
primary determinant of 3D stability behaviour, then obviously all anisotropic walls 
with the same type of variation of wall stiffness with oblique wave direction will tend 
to have a similar type of 3D stability behaviour. Thus orthotropic plates and 
orthotropic material layers may be expected to share common 3D stability features. 
The same may be said for Grosskreutz-type anisotropic plate surfaces and the 
layered walls of $4.1. 

The 3D stability of boundary-layer flow over Grosskreutz-type anisotropic plates 
and orthotropic plates with reduced spanwise flexural rigidity was also investigated 
by J o s h  et al. (1991). An example featuring zero spanwise flexural rigidity was 
given. Their results concur with the above expectations. 

5.2. Optimization 

The compliant walls we have studied in $33 and 4 above are by no means optimal in 
the sense of promoting transition delay. Optimization of transition delay for the 
types of wall we have examined, which may be multi-layer and anisotropic, will 
certainly be a major computational undertaking in view of the large number of wall 
parameters that may be involved and the cost of computing transition based on an 
en rule. For volume-based models at  least, a sound basis for an optimization 
procedure is still lacking, although a useful procedure had been introduced by 
Carpenter (1985) for the simpler plate model. 

Carpenter (1985) optimized the performance of his plate surfaces by first requiring 
that they be marginally stable with respect to the TWF and SD, both as hydroelastic 
(potential flow) instabilities, and then assessing the ability of the walls to stabilize 
the TSI by examining the growth rates of the TSI at a fixed Reynolds number 
(R, = 2240, corresponding to the location where a rigid wall has maximum TSI growth 
rate, is frequently used). The use of hydroelastic criteria is on the conservative side 
as Carpenter acknowledged. In fact, in the viscous case, TWF can easily be kept at 
bay to large R, with wall damping, so long as the wall is not so soft as to admit a 
TWF-TSI coalescence. SD instabilities tend to be less of a threat in the laminar 
boundrtry-layer case (see $3.5 of Yeo 1990). Furthermore, the choice of R, is to an 
extent questionable and needs more careful justification. These inadequacies must, 
however, be viewed in the context of the difficulty and cost of actually optimizing 
with respect to a en rule, and Carpenter must be credited with having devised a 
practical scheme which can be employed for the preliminary design of transition- 
delaying plate surfaces. 

Carpenter’s scheme, however, is not easily extended to the category of compliant 
walls studied here. This is because the hydroelastic TWF and SD criteria for the 
present types of wall are, in general, definable only in a numerically implicit manner, 
and cannot be given closed algebraic form, except for the simplest case of a single 
incompressible isotropic layer. For this simplest case, marginal stability with respect 
to both hydroelastic TWF and SD instabilities yields an elastic shear wave speed of 
Ct = 1.0468 and a density of p = 0.4563 according to the theory of Yeo & Dowling 
(1987), with thickness of layer and level of material damping playing no direct role. 
To extend Carpenter’s scheme for hydroelastic stability to multi-layer walls, 
complicated numerical procedures to  implement and also match the two hydroelastic 
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criteria would have to be resorted to. Carpenter’s procedure had been worked out for 
2D instabilities. For anisotropic walls, the hydroelastic criteria would have to 
account for the possibility of dominant 3D TWF and SD instability modes. For 
optimization with respect to the TSI, the scheme of Carpenter would also need to be 
refined to take into account the dominance of 3D TSI modes, now that we are aware 
of their critical importance. It is useful to note that Carpenter (1991) has recently 
extended his 2D optimization scheme to multiple-panel plate surfaces (panels placed 
in sequence downstream). 

The primary interest of the present paper has been in the physics, rather than the 
more practical concern of obtaining the largest possible transition delay. The latter 
is a separate problem, deserving a separate study, and with a level of difficulty 
dependent on how stringent one chooses to be about achieving optimality. No 
attempt has been made to optimize the performance of the walls studied in $53 and 
4, although some of them do possess good potential for delaying transition with the 
CIFI well under control. The better performing walls had been selected based on 
their good 2D transition delaying potentials (see Yeo 1988, 1990), which, it is 
pertinent to note, are of similar order to those quoted by Carpenter and coworkers 
for their optimized plate surfaces. With the great freedom available for the design of 
solid layered walls, transition delays significantly greater than those on compliant 
membrane and plate surfaces cannot be ruled out. 

6. Concluding summary and remarks 
The linear stability of three-dimensional (oblique) disturbance wave modes in 

quasi-parallel two-dimensional flows over compliant walls possessing general 
material anisotropy was formulated. Our approach differs significantly from that of 
Carpenter & Gajjar (1990), and sheds more light on the physics of 3D wave modes. 
For walls whose material stress-strain behaviour is isotropic with respect to all 
directions in the (zl, z,)-plane, it  was shown that the 3D stability eigenvalue problem 
for unstable normal modes can be reduced to an equivalent 2D one involving the 
OrrSommerfeld equation (1 1 a). This reduction is possible because the spectrum 
associated with the vertical vorticity equation (Ilb) was shown to comprise only 
damped modes. This reduction cannot be extended to anisotropic material walls in 
general because the governing equations for wall motion do not decouple as do the 
flow equations. 

The case of isotropic-material walls was studied in detail. The reduction allows 
many features of 3D flow stability to be explained on the basis of 2D results. 
Furthermore, a simple rescaling of the equivalent 2D problem reveals that the 
relative stability of the 2D and 3D wave modes are governed by two factors : namely, 
the apparent reduction in the Reynolds number of the flow and the apparent increase 
in the material stiffness of the wall perceived by oblique waves. The first factor tends 
to favour stability. The effect of the second factor, referred to as the stiffness 
rescaling effect, depends on the class of instability in question. Increase in wall 
stiffness favours the stability of the CIFI. The worst-case instability for CIFI is 
therefore normally presented by 2D modes. To eliminate CIFI, two-dimensional 
study appears adequate. The TSI are destabilized by increases in wall stiffness. With 
the two factors in opposition, it is not known a priori if 2D or 3D modes are going 
to be the more dominant ones. Results indicate that the apparent increase in wall 
stiffness is indeed an important factor and that 3D/oblique TSI modes tend to 
become more dominant than the 2D modes when the wall is sufficiently compliant. 

10.2 
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A consequence of the dominance of the 3D modes is that  the critical Reynolds 
number for the TSI regime of a compliant wall may be given by 3D modes. The faster 
growth of the 3D modes also implies that  the prediction of transition (en rule) based 
solely on 2D modes, the common practice, would overestimate the true transition 
distance; and that for more realistic estimation, the growth of 3D modes must be 
considered. The reduction in transition distances from corresponding 2D values may 
be significant for some highly compliant walls. However, since wall compliance has 
a stabilizing influence on both 2D and 3D TSI modes, the TSI growth rates on a 
highly compliant wall may yet be much lower than those on a rigid wall. Thus a 
highly compliant wall (in the absence of overwhelming CIFI) may yet be able to offer 
substantial delay of transition over the rigid-wall case. The effects of material 
damping were also investigated. Material damping tends to have a stronger 
destabilizing effect on TSI wave modes propagating a t  smaller oblique angles. 
Material damping may therefore alter the relative dominance of the 2D and 3D 
modes. Examples presented show that an increase in material damping can make the 
critical Reynolds number belong to  a 2D mode when it originally belonged to a 3D 
one. The effects of material damping on the TSI regime, however, diminish rapidly 
and become quite unimportant at high Reynolds number or when the propagation 
angle 8 is large. 

The emphasis above on 3D modes should not be taken to mean that 2D studies are 
misleading or useless. For isotropic walls a t  least, 2D stability characteristics 
generally give a good indication of the ability of the wall to stabilize the TSI modes. 
For the elimination of CIFI on isotropic walls, 2D studies are usually adequate. 2D 
studies are particularly useful as a guide to the relative ability of isotropic walls to  
suppress flow instabilities. They are therefore applicable as a guide to the selection 
of walls for more careful and expensive 3D scrutiny. An isotropic wall with 
undesirable 2D stability characteristics could not be expected to perform well in 
transition delay. I n  the same vein, estimates of transition distances based on 2D 
modes could also provide a relative guide to the walls’ ability to delay transition, 
although the predicted transition distances by themselves must be viewed with some 
suspicion. 

A good deal of what we have said above concerning isotropic-material walls is also 
applicable when the material is anisotropic. This is because the potential for flow 
instability actually resides with the Orr-Sommerfeld equation (1 1 a). The vertical 
vorticity equation (11 b )  cannot extract energy for the growth of uk-mode from the 
mean flow except in the presence of a non-zero ui component of disturbance velocity. 
This is in fact the underlying physical cause for the absence of unstable modes in the 
spectrum of the VV equation for walls possessing material isotropy in the (xl,xz)- 
plane. For anisotropic-material walls in general, however, there is no distinct VV 
spectrum because of the non-trivial coupling between the in-plane and anti-plane 
components of wall motion. The coupling allows the VV equation to  exercise some 
degree of influence on the 0s equation. As a consequence of the pre-eminent role of 
the 0s equation, even for the anisotropic cases, the stability of 3D/oblique wave 
modes on anisotropic walls is also strongly influenced by the scaling effect on wall 
stiffness and the reduction in effective Reynolds number. Whilst recognizing this 
similarity with the isotropic case, it should be noted that material anisotropy does 
offer one important advantage over isotropy in that the effect of stiffness scaling, 
which is inimical to the stability of the TS modes, could be ameliorated by the choice 
of anisotropies that have reduced material stiffness in oblique planes. An example 
featuring such anisotropy was presented. The reduced material stiffness in oblique 
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planes partially neutralized the stiffness rescaling effect so that the oblique waves 
perceived a softer wall. This led to a very significant reduction in the growth rates 
of the 3D modes relative to those of the 2D modes. Such anisotropy may, however, 
encourage the enhancement or onset of oblique CIFI. In many cases, however, the 
enhanced CIFI may be suppressed by increasing the material damping. Whenever 
the anisotropy does not confer reduced material stiffness in oblique directions/planes, 
the effect of stiffness rescaling generally leads to enhanced growth rates for the 3D 
TSI wave modes, much as in the isotropic case. 

In spite of the essential pre-eminence of the 0s equation, the role of the VV 
equation should not be regarded as being entirely trivial. The coupling between the 
in-plane and the anti-plane components of displacement that is present within the 
anisotropic-material walls allows disturbance energy to be exchanged between the 
fluctuations governed by the 0s and the VV equations. A flow of energy from the 0s 
mode to the VV mode (necessarily via the wall) may well help to destabilize the 0s 
mode if the mode is of Class A type, and stabilize the 0s mode if it is of Class B type. 
A flow of energy from W mode to 0s mode may have the reverse effect on stability. 
This energy effect is worth more careful investigation and may be particularly 
important for walls which are elastic or mildly damped. It is possible that material 
anisotropy may provide a means with which the direction of energy flow may be 
selectively managed to improve flow stability. 

The author wishes to thank Dr Ann P. Dowling for the invaluable guidance and 
encouragement she had given him during the course of this work. The author also 
benefitted greatly from the various discussions with Professor M. Gaster to whom he 
would like to register his greatest appreciation herein. A large part of this work was 
done while the author was on study leave a t  the University of Cambridge. The 
financial support of the National University of Singapore and the Commonwealth 
Trust Fund is gratefully acknowledged. 

R E F E R E N C E S  

BENJAMIN, T. B. 1960 Effects of a flexible boundary on hydrodynamic stability. J. Fluid Mech. 
9,  513. 

BENJAMIN, T. B. 1963 The three-fold classification of unstable disturbances in flexible surfaces 
bounding inviscid flows. J. Fluid Mech. 16, 436. 

BRIGQS, R. J. 1964 Electron-stream Interaction. with Plasmas. Monograph 29. MIT Press. 
CARPENTER, P. W. 1984 A note on the hydroelastic instability of orthotropic plates. J. Sound Vib. 

CARPENTER, P. W. 1985 The optimization of compliant surfaces for transition delay. University of 
Exeter, School of Engineering, Tech. Note 8512. 

CARPENTER, P. W. 1990 Status of transition delay using compliant walls. In  Viscow D r w  
Reduction in Boundary Layers (ed. D. M. Bushnell & J. N. Heffner), p. 79. AIAA. 

CARPENTER, P. W. 1991 The optimization of multiple-panel compliant walls for delay of laminar- 
turbulent transition. AIAA Paper 91-1772. 

CARPENTER, P. W. & GAJJAR, J. S. B. 1990 A general theory for two- and three-dimensional wall- 
mode instabilities in boundary layers over isotropic and anisotropic compliant walls. Theor. 
Comp. Fluid Dyn. 1, 349. 

CARPENTER, P. W. & GARRAD, A. D. 1985 The hydrodynamic stability of flow over Kramer-type 
compliant surfaces. Part 1. Tollmien-Schlichting instabilities. J. Fluid Mech. 155, 465. 

CARPENTER, P. W. & GARRAD, A. D. 1986 The hydrodynamic stability of flow over Kramer-type 
compliant surfaces. Part 2. Flow-induced surface instabilities. J. Fluid Mech. 170, 199. 

CARPENTER, P. W. & MORRIS, P. J. 1989 Growth of three-dimensional instabilities in flow over 

95, 553. 



576 K .  S.  Ye0 

compliant walls. I n  Proc. Fourth Asian Congr. Fluid Mech., Hong Kolzg (ed. N.W.M. KO & S.C. 
Kot), Vol. 2, p. A206. 

CARPENTER, P. W. & MORRIS, P. J. 1990 The effects of anisotropic wall compliance on boundary- 
layer stability and transition. J. Fluid Mech. 218, 171. 

CEBECI, T. & STEWARTSON, P. J. 1980 On stability and transition in three-dimensional flows. 
AZAA J .  18, 398. 

CHRISTENSEN, R. M. 1979 Mechanics of Composite Materials. John Wiley & Sons. 
CRAIK, A. D. D. 1971 Nonlinear resonant instability in boundary layers. J. Fluid Mech. 50, 393. 
DAVEY, A. & REID, W. H. 1977 On the stability of stratified viscous plane Couette flow. Part 1. 

DRAZIN, P. G. & REID, W. H. 1981 Hydrodynamic Stability. Cambridge University Press. 
FUNG, Y. C. 1965 Foundations of Solid Mechanics. Prentice-Hall. 
GAD-EL-HAK, M., BLACKWELDER, R. F. & RILEY, J. J. 1984 On the interaction of compliant 

coatings with boundary-layer flows. J. Fluid Mech. 140, 257. 
GASTER, M. 1975 A theoretical model of a wave packet in the boundary layer on a flat plate. Proc. 

R .  SOC. Lond. A 347, 271. 
GASTER, M. 1987 Is the dolphin a red herring ? In  Proc. IUTAM Conf. on Turbulence Management 

and Relarninarization, Bangalore, India (ed. H. W. Liepmann & R. Narisimha), p. 285. 
Springer. 

GRAY, J. 1936 Studies in animal locomotion VI : The propulsive power of the dolphin. J. Exp. Biol. 
13, 192. 

GREEN, A. E. & ZERNA, W. 1968 Theoretical Elasticity. Oxford University Press. 
GUSTAVSSON, L. H. & HULTQREN, L. S. 1980 A resonant mechanism in plane Couette flow. 

J .  Fluid Mech. 98, 149. 
JOSLIN, R. D., MORRIS, P. J. & CARPENTER, P. W. 1991 The role of three-dimensional instabilities 

in compliant wall boundary layer transition. AZAA J .  (to appear). 
KACHANOV, Yu. S. & LEVCHENKO, V. YA. 1984 The resonant interaction of disturbances a t  

laminar-turbulent transition in a boundary layer. J. Fluid Mech. 138, 209. 
KAPLAN, R. E. 1964 The stability of laminar boundary layers in the presence of compliant 

boundaries. Sc.D. thesis, MIT. 
KLEBANOFF, P. S., TIDSTROM, K. D. & SARQENT, L. M. 1962 The three-dimensional nature of 

boundary layer instability. J. Fluid Mech. 12, 1. 
KRAMER, M. 0. 1960 Boundary layer stabilization by distributed damping. J. Am. Soc. Naval 

Engrs 73, 25. 
LANDAHL, M. T. 1962 On the stability of a laminar incompressible boundary layer over a flexible 

surface. J. Fluid Mech. 13, 609. 
LEKHNITSKII, S. G. 1963 Theory of Elasticity of an Anisotropic Elastic Body. Holden-Day. 
MACK, L. M. 1978 Three-dimensional effects in boundary-layer stability. In Proc. 12th Syrnp. 

NAYFEH, A. H. 1980 Stability of three-dimensional boundary layers. AZAA J. 18, 406. 
NONWEILER, T. 1963 Qualitative solution of the stability equation for a boundary layer in contact 

with various forms of flexible surface. Aero Res. Coun. Rep. CP 622. 
RILEY, J. J., GAD-EL-HAK, M. & METCALFE, R. W. 1988 Compliant coatings. Ann. Rev. Fluid 

Mech. 20, 393. 
SARIC, W. S. & THOMAS, A. S. W. 1984 Experiments on subharmonic route to turbulence in 

boundary layers. In  Turbulence and Chaotic Phenomena in Fluids, PTOC. ZUTAM Syrnp., Kyoto 
(ed. T. Tatsumi). North-Holland. 

SQUARE, H. B. 1933 On the stability of three-dimensional disturbances of viscous flow between 
parallel walls. Proc. R .  SOC. Lo&. A 142, 621. 

STUART, J. T. 1963 Hydrodynamic stability. In  Laminar Boundary Layer (ed. L. Rosenhead), p. 
492. Clarendon. 

WILLIS, G. J. K. 1986 Hydrodynamic stability of boundary layers over compliant surfaces. Ph.D. 
thesis, University of Exeter. 

YEO, K. S. 1986 The stability of flow over flexible surfaces. Ph.D. thesis, University of Cambridge. 

Constant buoyancy frequency. J. Fluid Mech. 80, 509. 

Naval Hydrodynamics, p. 63. National Academy of Science, Washington. 



Three-dimensional stability of $ow over compliant walls 577 

YEO, K.  S. 1988 The stability of boundary-layer flow over single- and multi-layer viscoelastic 

YEO, K. S. 1990 The hydrodynamic stability of boundary-layer flow over a class of anisotropic 

YEO, K.  S. & DOWLINQ, A. P. 1987 The stability of inviscid flows over passive compliant walls. 

walls. J .  Fluid Mech. 196, 359. 

compliant walls. J .  Fluid Meeh. 220, 125. 

J .  Fluid Mech. 183, 265. 


